Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractMethyl jasmonate-induced resistance to Delia platura (Diptera: Anthomyiidae) in Lupinus mutabilis    Next AbstractInduced immunity against belowground insect herbivores- activation of defenses in the absence of a jasmonate burst »

Plant Signal Behav


Title:Belowground ABA boosts aboveground production of DIMBOA and primes induction of chlorogenic acid in maize
Author(s):Erb M; Gordon-Weeks R; Flors V; Camanes G; Turlings TC; Ton J;
Address:"Laboratory for Fundamental and Applied Research in Chemical Ecology (FARCE), University of Neuchatel, Neuchatel, Switzerland"
Journal Title:Plant Signal Behav
Year:2009
Volume:20090711
Issue:7
Page Number:636 - 638
DOI: 10.1111/j.1365-313X.2009.03868.x
ISSN/ISBN:1559-2324 (Electronic) 1559-2316 (Print) 1559-2316 (Linking)
Abstract:"Plants are important mediators between above- and belowground herbivores. Consequently, interactions between root and shoot defenses can have far-reaching impacts on entire food webs. We recently reported that infestation of maize roots by larvae of the beetle Diabrotica virgifera virgifera induced shoot resistance against herbivores and pathogens. Root herbivory also enhanced aboveground DIMBOA and primed for enhanced induction of chlorogenic acid, two secondary metabolites that have been associated with plant stress resistance. Interestingly, the plant hormone abscisic acid (ABA) emerged as a putative long-distance signal in the regulation of these systemic defenses. In this addendum, we have investigated the role of root-derived ABA in aboveground regulation of DIMBOA and the phenolic compounds chlorogenic acid, caffeic and ferulic acid. Furthermore, we discuss the relevance of ABA in relation to defense against the leaf herbivore Spodoptera littoralis. Soil-drench treatment with ABA mimicked root herbivore-induced accumulation of DIMBOA in the leaves. Similarly, ABA mimicked aboveground priming of chlorogenic acid production, causing augmented induction of this compound after subsequent shoot attack by S. littoralis caterpillars. These findings confirm our notion that ABA acts as an important signal in the regulation of aboveground defenses during belowground herbivory. However, based on our previous finding that ABA alone is not sufficient to trigger aboveground resistance against S. littoralis caterpillars, our results also suggest that the ABA-inducible effects on DIMBOA and chlorogenic acid are not solely responsible for root herbivore-induced resistance against S. littoralis"
Keywords:
Notes:"PubMed-not-MEDLINEErb, Matthias Gordon-Weeks, Ruth Flors, Victor Camanes, Gemma Turlings, Ted C J Ton, Jurriaan eng BB/E023959/1/Biotechnology and Biological Sciences Research Council/United Kingdom Comment Research Support, Non-U.S. Gov't 2009/10/13 Plant Signal Behav. 2009 Jul; 4(7):636-8. doi: 10.1111/j.1365-313X.2009.03868.x. Epub 2009 Jul 11"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-12-2024