Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractThe smell of environmental change: Using floral scent to explain shifts in pollinator attraction    Next Abstract"Seasonal abundance of the navel orangeworm, Amyelois transitella, in figs and the effect of peripheral aerosol dispensers on sexual communication" »

Biosens Bioelectron


Title:Printable QR code paper microfluidic colorimetric assay for screening volatile biomarkers
Author(s):Burklund A; Saturley-Hall HK; Franchina FA; Hill JE; Zhang JXJ;
Address:"Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA. Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA; Department of Chemistry, University of Liege, Liege, 4000, Belgium. Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA. Electronic address: john.zhang@dartmouth.edu"
Journal Title:Biosens Bioelectron
Year:2019
Volume:20181221
Issue:
Page Number:97 - 103
DOI: 10.1016/j.bios.2018.12.026
ISSN/ISBN:1873-4235 (Electronic) 0956-5663 (Linking)
Abstract:"We present a QR code paper microfluidic colorimetric assay that can exploit the hardware and software on mobile devices, and circumvent sample preparation by directly targeting volatile biomarkers. Our platform is a printable microarray of well-defined reaction regions, which outputs an instant diagnosis by directing the user to a URL containing their test result, while simultaneously storing epidemiological data for remote access and bioinformatics. To assist in the rapid identification of Escherichia coli in bloodstream infections, we employed an existing colorimetric reagent (p-dimethylaminocinnamaldehyde) and adapted its use to detect volatile indole, a biomarker produced by E. coli. Our assay was able to quantitatively detect indole in the headspace of E. coli culture after 12?ª+h of growth (27.0?ª++/-?ª+3.1?ª+ppm), assisting in species-level identification hours earlier than existing methods. Results were confirmed with headspace solid-phase microextraction (HS-SPME) two-dimensional gas chromatography time-of-flight mass spectrometry (GCxGC-ToFMS), which estimated indole concentration in E. coli culture to average 32.3?ª++/-?ª+5.2?ª+ppm after 12?ª+h of growth. This QR paper microfluidic platform represents a novel development in both telemedicine and diagnostics using volatile biomarkers. We envision that our QR code platform can be extended to other colorimetric assays for real-time diagnostics in low-resource environments"
Keywords:*Biosensing Techniques Colorimetry Escherichia coli/*isolation & purification/pathogenicity Escherichia coli Infections/*blood/microbiology Gas Chromatography-Mass Spectrometry Indoles/chemistry Microfluidics Solid Phase Microextraction Volatile Organic C;
Notes:"MedlineBurklund, Alison Saturley-Hall, Harrison K Franchina, Flavio A Hill, Jane E Zhang, John X J eng England 2019/01/15 Biosens Bioelectron. 2019 Mar 1; 128:97-103. doi: 10.1016/j.bios.2018.12.026. Epub 2018 Dec 21"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 13-01-2025