Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractProduction and emission of volatile compounds by petal cells    Next AbstractA splice site variant in the SUV39H2 gene in Greyhounds with nasal parakeratosis »

Biomolecules


Title:"Volatile Phases Derived from Serum, DC, or MLC Culture Supernatants to Deduce a VOC-Based Diagnostic Profiling Strategy for Leukemic Diseases"
Author(s):Baudrexler T; Boeselt T; Li L; Bohlscheid S; Boas U; Schmid C; Rank A; Schmohl J; Koczulla R; Schmetzer HM;
Address:"Medical Department III, Hospital Grosshadern, Ludwig-Maximilians-University, 81377 Munich, Germany. Department of Pulmonary Rehabilitation, German Center for Lung Research (DZL), Phillipps-University of Marburg, 35043 Marburg, Germany. Department of Hematology and Oncology, University Hospital of Augsburg, 86156 Augsburg, Germany. Department of Hematology and Oncology, Diaconia Hospital Stuttgart, 70176 Stuttgart, Germany"
Journal Title:Biomolecules
Year:2023
Volume:20230614
Issue:6
Page Number: -
DOI: 10.3390/biom13060989
ISSN/ISBN:2218-273X (Electronic) 2218-273X (Linking)
Abstract:"Volatile organic compounds (VOCs) reflect the metabolism in healthy and pathological conditions, and can be collected easily in a noninvasive manner. They are directly measured using electronical nose (eNose), and may qualify as a systemic tool to monitor biomarkers related to disease. Myeloid leukemic blasts can be transformed into leukemia-derived dendritic cells (DC(leu)) able to improve (anti-leukemic) immune responses. To profile immunological changes in healthy and acute myeloid leukemic (AML) patients' ex vivo cell cultures, we correlated the cell biological data with the profiles of cell culture supernatant-derived VOCs. DC/DC(leu) from leukemic or healthy whole blood (WB) were generated without (Control) or with immunomodulatory Kit M (Granulocyte macrophage-colony-stimulating-factor (GM-CSF) + prostaglandin E(1) (PGE(1))) in dendritic cell cultures (DC culture). Kit-pretreated/not pretreated WB was used to stimulate T cell-enriched immunoreactive cells in mixed lymphocyte cultures (MLC culture). Leukemia-specific adaptive and innate immune cells were detected with a degranulation assay (Deg) and an intracellular cytokine assay (InCyt). Anti-leukemic cytotoxicity was explored with a cytotoxicity fluorolysis assay (CTX). VOCs collected from serum or DC- and MLC culture supernatants (with vs. without Kit M pretreatment and before vs. after culture) were measured using eNose. Compared to the Control (without treatment), Kit M-pretreated leukemic and healthy WB gave rise to higher frequencies of mature (leukemia-derived) DC subtypes of activated and (memory) T cells after MLC. Moreover, antigen (leukemia)-specific cells of several lines (innate and adaptive immunity cells) were induced, giving rise to blast-lysing cells. The eNose could significantly distinguish between healthy and leukemic patients' serum, DC and MLC culture supernatant-derived volatile phases and could significantly separate several supernatant (with vs. without Kit M treatment, cultured vs. uncultured)-derived VOCs within subgroups (healthy DC or leukemic DC, or healthy MLC or leukemic MLC supernatants). Interestingly, the eNose could indicate a Kit M- and culture-associated effect. The eNose may be a prospective option for the deduction of a VOC-based profiling strategy using serum or cell culture supernatants and could be a useful diagnostic tool to recognize or qualify AML disease"
Keywords:"Humans Dendritic Cells *Volatile Organic Compounds/metabolism *Leukemia, Myeloid, Acute/metabolism Prospective Studies Lymphocyte Activation acute myeloid leukemia anti-leukemia functionality immune monitoring leukemia-derived DC leukemia-specific cells v;"
Notes:"MedlineBaudrexler, Tobias Boeselt, Tobias Li, Lin Bohlscheid, Sophia Boas, Ursel Schmid, Christoph Rank, Andreas Schmohl, Jorg Koczulla, Rembert Schmetzer, Helga Maria eng Switzerland 2023/06/28 Biomolecules. 2023 Jun 14; 13(6):989. doi: 10.3390/biom13060989"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 13-01-2025