Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractDevelopment of a flow controller for long-term sampling of gases and vapors using evacuated canisters    Next AbstractEvaluation of Long-Term Flow Controller for Monitoring Gases and Vapors in Buildings Impacted by Vapor Intrusion »

J Occup Environ Hyg


Title:A novel personal air sampling device for collecting volatile organic compounds: a comparison to charcoal tubes and diffusive badges
Author(s):Rossner A; Farant JP;
Address:"Environmental and Occupational Health Program, Department of Biology, Clarkson University, Potsdam, New York 13699, USA. rossner@clarkson.edu"
Journal Title:J Occup Environ Hyg
Year:2004
Volume:1
Issue:2
Page Number:69 - 81
DOI: 10.1080/15459620490275542
ISSN/ISBN:1545-9624 (Print) 1545-9624 (Linking)
Abstract:"Evacuated canisters have been used for many years to collect ambient air samples for gases and vapors. Recently, significant interest has arisen in using evacuated canisters for personal breathing zone sampling as an alternative to sorbent sampling. A novel flow control device was designed and built at McGill University. The flow control device was designed to provide a very low flow rate, <0.5 mL/min, to allow a sample to be collected over an extended period of time. Previous experiments run at McGill have shown agreement between the mathematical and empirical models to predict flow rate. The flow control device combined with an evacuated canister (capillary flow control-canister) was used in a series of experiments to evaluate its performance against charcoal tubes and diffusive badges. Air samples of six volatile organic compounds were simultaneously collected in a chamber using the capillary flow control-canister, charcoal tubes, and diffusive badges. Five different concentrations of the six volatile organic compounds were evaluated. The results from the three sampling devices were compared to each other and to concentration values obtained using an online gas chromatograph (GC). Eighty-four samples of each method were collected for each of the six chemicals. Results indicate that the capillary flow control-canister device compares quite favorably to the online GC and to the charcoal tubes, p > 0.05 for most of the tests. The capillary flow control-canister was found to be more accurate for the compounds evaluated, easier to use, and easier to analyze than charcoal tubes and passive dosimeter badges"
Keywords:"Air Movements Air Pollutants/*analysis Automation Charcoal/chemistry Chromatography, Gas Diffusion Environmental Monitoring/*instrumentation Gases Organic Chemicals/analysis Reproducibility of Results Volatilization;"
Notes:"MedlineRossner, Alan Farant, Jean-Pierre eng Comparative Study Evaluation Study England 2004/06/19 J Occup Environ Hyg. 2004 Feb; 1(2):69-81. doi: 10.1080/15459620490275542"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 13-01-2025