Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractChemical signals in insects and other arthropods: from molecular structure to physiological functions    Next AbstractCharacterization of truck-mounted atomization equipment typically used in vector control »

BMC Biol


Title:Increased paternal corticosterone exposure influences offspring behaviour and expression of urinary pheromones
Author(s):Hoffmann LB; McVicar EA; Harris RV; Collar-Fernandez C; Clark MB; Hannan AJ; Pang TY;
Address:"The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia. Florey Department of Neuroscience and Mental Health, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, VIC, Australia. Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia. Centre for Stem Cell Systems, Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia. The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia. terence.pang@florey.edu.au. Florey Department of Neuroscience and Mental Health, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, VIC, Australia. terence.pang@florey.edu.au. Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia. terence.pang@florey.edu.au"
Journal Title:BMC Biol
Year:2023
Volume:20230905
Issue:1
Page Number:186 -
DOI: 10.1186/s12915-023-01678-z
ISSN/ISBN:1741-7007 (Electronic) 1741-7007 (Linking)
Abstract:"BACKGROUND: Studies have shown that paternal stress prior to conception can influence the innate behaviours of their offspring. The evolutionary impacts of such intergenerational effects are therefore of considerable interest. Our group previously showed in a model of daily stress that glucocorticoid treatment of adult male mouse breeders prior to conception leads to increased anxiety-related behaviours in male offspring. Here, we aimed to understand the transgenerational effects of paternal stress exposure on the social behaviour of progeny and its potential influence on reproductive success. RESULTS: We assessed social parameters including social reward, male attractiveness and social dominance, in the offspring (F1) and grand-offspring (F2). We report that paternal corticosterone treatment was associated with increased display of subordination towards other male mice. Those mice were unexpectedly more attractive to female mice while expressing reduced levels of the key rodent pheromone Darcin, contrary to its conventional role in driving female attraction. We investigated the epigenetic regulation of major urinary protein (Mup) expression by performing the first Oxford Nanopore direct methylation of sperm DNA in a mouse model of stress, but found no differences in Mup genes that could be attributed to corticosterone-treatment. Furthermore, no overt differences of the prefrontal cortex transcriptome were found in F1 offspring, implying that peripheral mechanisms are likely contributing to the phenotypic differences. Interestingly, no phenotypic differences were observed in the F2 grand-offspring. CONCLUSIONS: Overall, our findings highlight the potential of moderate paternal stress to affect intergenerational (mal)adaptive responses, informing future studies of adaptiveness in rodents, humans and other species"
Keywords:"Adult Humans Male Female Animals Mice *Corticosterone *Epigenesis, Genetic Semen Research Design Pheromones Epigenetic inheritance Major urinary protein Mate choice Paternal stress Reproductive success Social dominance;neuroscience;"
Notes:"MedlineHoffmann, Lucas B McVicar, Evangeline A Harris, Rebekah V Collar-Fernandez, Coralina Clark, Michael B Hannan, Anthony J Pang, Terence Y eng Research Support, Non-U.S. Gov't England 2023/09/05 BMC Biol. 2023 Sep 5; 21(1):186. doi: 10.1186/s12915-023-01678-z"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-12-2024