Title: | Influence of nitrogen status in wine alcoholic fermentation |
Author(s): | Gobert A; Tourdot-Marechal R; Sparrow C; Morge C; Alexandre H; |
Address: | "UMR Procedes Alimentaires et Microbiologiques, Universite de Bourgogne Franche-Comte/ AgroSup Dijon - Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), Institut Universitaire de la Vigne et du Vin Jules Guyot, Universite de Bourgogne, Dijon, France. Electronic address: antoinegobert1@gmail.com. UMR Procedes Alimentaires et Microbiologiques, Universite de Bourgogne Franche-Comte/ AgroSup Dijon - Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), Institut Universitaire de la Vigne et du Vin Jules Guyot, Universite de Bourgogne, Dijon, France. SAS Sofralab, 79, Av. A.A. Thevenet, BP 1031, Magenta, France" |
ISSN/ISBN: | 1095-9998 (Electronic) 0740-0020 (Linking) |
Abstract: | "Nitrogen is an essential nutrient for yeast during alcoholic fermentation. Nitrogen is involved in the biosynthesis of protein, amino acids, nucleotides, and other metabolites, including volatile compounds. However, recent studies have called several mechanisms that regulate its role in biosynthesis into question. An initial focus on S. cerevisiae has highlighted that the concept of 'preferred' versus 'non-preferred' nitrogen sources is extremely variable and strain-dependent. Then, the direct involvement of amino acids consumed in the formation of proteins and volatile compounds has recently been reevaluated. Indeed, studies have highlighted the key role of lipids in nitrogen regulation in S. cerevisiae and their involvement in the mechanism of cell death. New winemaking strategies using non-Saccharomyces yeast strains in co- or sequential fermentation improve nitrogen management. Indeed, recent studies show that non-Saccharomyces yeasts have significant and specific needs for nitrogen. Moreover, sluggish fermentation can occur when they are associated with S. cerevisiae, necessitating nitrogen addition. In this context, we will present the consequences of nitrogen addition, discussing the sources, time of addition, transcriptome changes, and effect on volatile compound composition" |
Keywords: | Amino Acids/metabolism *Fermentation Nitrogen/*metabolism Saccharomyces cerevisiae/genetics/*metabolism Volatile Organic Compounds/metabolism Wine/*microbiology Alcoholic fermentation Amino acids Ammonium Nitrogen Volatile compounds Wine Yeasts; |
Notes: | "MedlineGobert, Antoine Tourdot-Marechal, Raphaelle Sparrow, Celine Morge, Christophe Alexandre, Herve eng Review England 2019/06/17 Food Microbiol. 2019 Oct; 83:71-85. doi: 10.1016/j.fm.2019.04.008. Epub 2019 Apr 23" |