Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractAlcohol exposure during development: analysis of effects on female sexual behavior    Next Abstract"The insect HR38 nuclear receptor, a member of the NR4A subfamily, is a synchronizer of reproductive activity in a moth" »

Biotechnol Bioeng


Title:Engineering of Pichia pastoris for improved production of antibody fragments
Author(s):Gasser B; Maurer M; Gach J; Kunert R; Mattanovich D;
Address:"Institute of Applied Microbiology, BOKU University of Natural Resources and Applied Life Sciences Vienna, Muthgasse 18, A-1190 Vienna, Austria"
Journal Title:Biotechnol Bioeng
Year:2006
Volume:94
Issue:2
Page Number:353 - 361
DOI: 10.1002/bit.20851
ISSN/ISBN:0006-3592 (Print) 0006-3592 (Linking)
Abstract:"The methylotrophic yeast Pichia pastoris has been used for the expression of many proteins, including antibody fragments. However, limitations became obvious especially when secreting heterodimeric Fab fragments. Up-to-date, antibody fragments have only been expressed under control of the strong inducible alcohol oxidase 1 (AOX1) promoter, which may stress the cells by excessive transcription. Here, we examined the secretion characteristics of single chain and Fab fragments of two different monoclonal anti-HIV1 antibodies (2F5 and 2G12) with both the AOX1 and the glyceraldehyde-3-phosphate dehydrogenase (GAP) promoter. Also, the influences of different secretion leaders and strains were evaluated. Interestingly, secretion was only achieved when using the GAP promoter and the Saccharomyces cerevisiae mating factor alpha (MFalpha leader), whereas there was no difference between the two P. pastoris strains. During fed batch fermentation of a 2F5 Fab expressing strain, intracellular retention of Fab heavy chains was observed, while both intact Fab and single light chain molecules were only detected in the supernatants. This led to the conclusion that protein folding and heterodimer assembly in the ER are rate limiting steps in Fab secretion. To alleviate this limitation, S. cerevisiae protein disulfide isomerase (PDI) and the unfolded protein response (UPR) transcription factor HAC1 were constitutively overexpressed in P. pastoris. While the overexpression of HAC1 led to a moderate increase of Fab secretion of 1.3-fold, PDI enabled an increase of the Fab level by 1.9-fold. Hence, the formation of interchain disulfide bonds can be seen as a major rate limiting factor to Fab assembly and subsequent secretion"
Keywords:"Alcohol Oxidoreductases/genetics Antibodies, Fungal/*biosynthesis Antibodies, Monoclonal/metabolism Basic-Leucine Zipper Transcription Factors/genetics Fermentation Fungal Proteins/genetics Glyceraldehyde-3-Phosphate Dehydrogenases/genetics Immunoglobulin;"
Notes:"MedlineGasser, Brigitte Maurer, Michael Gach, Johannes Kunert, Renate Mattanovich, Diethard eng 2006/03/30 Biotechnol Bioeng. 2006 Jun 5; 94(2):353-61. doi: 10.1002/bit.20851"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 22-11-2024