Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous Abstract[A method for detection of volatile organic halogenated compounds in human and animal tissues (author's transl)]    Next AbstractApplication of hand-held mobility spectrometers as sensors in manufacturing industries »

J Chem Phys


Title:Chloroacetone photodissociation at 193 nm and the subsequent dynamics of the CH3C(O)CH2 radical--an intermediate formed in the OH + allene reaction en route to CH3 + ketene
Author(s):Alligood BW; FitzPatrick BL; Szpunar DE; Butler LJ;
Address:"The James Franck Institute and Department of Chemistry, University of Chicago, Chicago, Illinois 60637, USA"
Journal Title:J Chem Phys
Year:2011
Volume:134
Issue:5
Page Number:54301 -
DOI: 10.1063/1.3525465
ISSN/ISBN:1089-7690 (Electronic) 0021-9606 (Linking)
Abstract:"We use a combination of crossed laser-molecular beam experiments and velocity map imaging experiments to investigate the primary photofission channels of chloroacetone at 193 nm; we also probe the dissociation dynamics of the nascent CH(3)C(O)CH(2) radicals formed from C-Cl bond fission. In addition to the C-Cl bond fission primary photodissociation channel, the data evidence another photodissociation channel of the precursor, C-C bond fission to produce CH(3)CO and CH(2)Cl. The CH(3)C(O)CH(2) radical formed from C-Cl bond fission is one of the intermediates in the OH + allene reaction en route to CH(3) + ketene. The 193 nm photodissociation laser allows us to produce these CH(3)C(O)CH(2) radicals with enough internal energy to span the dissociation barrier leading to the CH(3) + ketene asymptote. Therefore, some of the vibrationally excited CH(3)C(O)CH(2) radicals undergo subsequent dissociation to CH(3) + ketene products; we are able to measure the velocities of these products using both the imaging and scattering apparatuses. The results rule out the presence of a significant contribution from a C-C bond photofission channel that produces CH(3) and COCH(2)Cl fragments. The CH(3)C(O)CH(2) radicals are formed with a considerable amount of energy partitioned into rotation; we use an impulsive model to explicitly characterize the internal energy distribution. The data are better fit by using the C-Cl bond fission transition state on the S(1) surface of chloroacetone as the geometry at which the impulsive force acts, not the Franck-Condon geometry. Our data suggest that, even under atmospheric conditions, the reaction of OH with allene could produce a small branching to CH(3) + ketene products, rather than solely producing inelastically stabilized adducts. This additional channel offers a different pathway for the OH-initiated oxidation of such unsaturated volatile organic compounds, those containing a C=C=C moiety, than is currently included in atmospheric models"
Keywords:
Notes:"PubMed-not-MEDLINEAlligood, Bridget W FitzPatrick, Benjamin L Szpunar, David E Butler, Laurie J eng 2011/02/10 J Chem Phys. 2011 Feb 7; 134(5):054301. doi: 10.1063/1.3525465"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 22-11-2024