Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractReview of recent developments in determining volatile organic compounds in exhaled breath as biomarkers for lung cancer diagnosis    Next Abstract'Plus-C' odorant-binding protein genes in two Drosophila species and the malaria mosquito Anopheles gambiae »

Environ Technol


Title:Toluene catalytic oxidation over gold catalysts supported on cerium-based high-entropy oxides
Author(s):Zhou J; Zheng Y; Zhang G; Zeng X; Xu G; Cui Y;
Address:"School of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang, Liaoning, People's Republic of China. State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, People's Republic of China. Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, People's Republic of China"
Journal Title:Environ Technol
Year:2023
Volume:20230420
Issue:
Page Number:1 - 13
DOI: 10.1080/09593330.2023.2202828
ISSN/ISBN:1479-487X (Electronic) 0959-3330 (Linking)
Abstract:"A series of cerium-based high-entropy oxide catalysts (the ratio of CeO(2) and HEO is 1:1) was prepared by a solid-state reaction method, which exploit their unique structural and performance advantages. The Ce-HEO-T samples can achieve 100% toluene conversion rate above 328 degrees C when they were used as catalysts directly. Subsequently, the Ce-HEO-500 exhibited the lowest temperature for toluene oxidation was used as a support to deposit different amounts of Au for a further performance improvement. Among all of prepared samples, Au/Ce-HEO-500 with a moderate content of Au (0.5 wt%) exhibited the lowest temperature for complete combustion of toluene (260 degrees C), which decreased nearly 70 degrees C compared with Ce-HEO-500 support. Moreover, it also showed excellent stability for 60 h with 98% toluene conversion rate. Most importantly, under the condition of 5 vol.% H(2)O vapour, the toluene conversion rate remained unchanged and even increased slightly compared with that in dry air, exhibiting excellent water resistance. Combined with the characterizations of XRD, SEM, TEM, BET, Raman, H(2)-TPR and XPS, it was found that the high dispersion of active Au NPs, the special high-entropy structure and the synergistic effect between Au and Ce, Co, Cu are the key factors when improving the catalytic performance in the Au/Ce-HEO-500 catalyst"
Keywords:Volatile organic compounds gold NPs high-entropy oxide oxygen vacancies water resistance;
Notes:"PublisherZhou, Jing Zheng, Yuhua Zhang, Guangyi Zeng, Xi Xu, Guangwen Cui, Yanbin eng England 2023/04/13 Environ Technol. 2023 Apr 20:1-13. doi: 10.1080/09593330.2023.2202828"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 22-11-2024