Title: | Silencing Doublesex expression triggers three-level pheromonal feminization in Nasonia vitripennis males |
Author(s): | Wang Y; Sun W; Fleischmann S; Millar JG; Ruther J; Verhulst EC; |
Address: | "Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, Building 107, 6708 PB Wageningen, Netherlands. Institute of Zoology, University of Regensburg, Regensburg, Germany. Department of Entomology, University of California Riverside, Riverside, CA, USA" |
ISSN/ISBN: | 1471-2954 (Electronic) 0962-8452 (Print) 0962-8452 (Linking) |
Abstract: | "Doublesex (Dsx) has a conserved function in controlling sexual morphological differences in insects, but our knowledge of its role in regulating sexual behaviour is primarily limited to Drosophila. Here, we show with the parasitoid wasp Nasonia vitripennis that males whose Dsx gene had been silenced (NvDsx-i) underwent a three-level pheromonal feminization: (i) NvDsx-i males were no longer able to attract females from a distance, owing to drastically reduced titres of the long-range sex pheromone; (ii) NvDsx-i males were courted by wild-type males as though they were females, which correlated with a lower abundance of alkenes in their cuticular hydrocarbon (CHC) profiles. Supplementation with realistic amounts of synthetic (Z)-9-hentriacontene (Z9C31), the most significantly reduced alkene in NvDsx-i males, to NvDsx-i males interrupted courtship by wild-type conspecific males. Supplementation of female CHC profiles with Z9C31 reduced courtship and mating attempts by wild-type males. These results prove that Z9C31 is crucial for sex discrimination in N. vitripennis; and (iii) Nvdsx-i males were hampered in eliciting female receptivity and thus experienced severely reduced mating success, suggesting that they are unable to produce the to-date unidentified oral aphrodisiac pheromone reported in N. vitripennis males. We conclude that Dsx is a multi-level key regulator of pheromone-mediated sexual communication in N. vitripennis" |
Keywords: | "Animals Courtship Female Feminization Humans Hydrocarbons/metabolism Male Pheromones/metabolism *Sex Attractants/metabolism Sexual Behavior, Animal/physiology *Wasps/genetics Doublesex Nasonia cuticular hydrocarbon mating behaviour pheromone;" |
Notes: | "MedlineWang, Yidong Sun, Weizhao Fleischmann, Sonja Millar, Jocelyn G Ruther, Joachim Verhulst, Eveline C eng England 2022/01/27 Proc Biol Sci. 2022 Jan 26; 289(1967):20212002. doi: 10.1098/rspb.2021.2002. Epub 2022 Jan 26" |