Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractSampling and recovery of ignitable liquid residues (ILRs) from fire debris using capillary microextraction of volatiles (CMV) for on-site analysis    Next AbstractVolatile Nitrogenous Compounds from Bacteria: Source of Novel Bioactive Compounds »

Plant Mol Biol


Title:The rice wound-inducible transcription factor RERJ1 sharing same signal transduction pathway with OsMYC2 is necessary for defense response to herbivory and bacterial blight
Author(s):Valea I; Motegi A; Kawamura N; Kawamoto K; Miyao A; Ozawa R; Takabayashi J; Gomi K; Nemoto K; Nozawa A; Sawasaki T; Shinya T; Galis I; Miyamoto K; Nojiri H; Okada K;
Address:"Agro-Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan. Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8518, Japan. Center for Ecological Research, Kyoto University, Otsu, Shiga, 520-2113, Japan. Graduate School of Agriculture, Kagawa University, Kita-gun, Kagawa, 761-0795, Japan. Proteo-Science Center, Ehime University, Matsuyama, Ehime, 790-8577, Japan. Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan. Graduate School of Science and Engineering, Teikyo University, Utsunomiya, Tochigi, 320-8551, Japan. Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, 113-8657, Japan. Agro-Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan. kokada@g.ecc.u-tokyo.ac.jp"
Journal Title:Plant Mol Biol
Year:2022
Volume:20210902
Issue:4-May
Page Number:651 - 666
DOI: 10.1007/s11103-021-01186-0
ISSN/ISBN:1573-5028 (Electronic) 0167-4412 (Linking)
Abstract:"This study describes biological functions of the bHLH transcription factor RERJ1 involved in the jasmonate response and the related defense-associated metabolic pathways in rice, with particular focus on deciphering the regulatory mechanisms underlying stress-induced volatile emission and herbivory resistance. RERJ1 is rapidly and drastically induced by wounding and jasmonate treatment but its biological function remains unknown as yet. Here we provide evidence of the biological function of RERJ1 in plant defense, specifically in response to herbivory and pathogen attack, and offer insights into the RERJ1-mediated regulation of metabolic pathways of specialized defense compounds, such as monoterpene linalool, in possible collaboration with OsMYC2-a well-known master regulator in jasmonate signaling. In rice (Oryza sativa L.), the basic helix-loop-helix (bHLH) family transcription factor RERJ1 is induced under environmental stresses, such as wounding and drought, which are closely linked to jasmonate (JA) accumulation. Here, we investigated the biological function of RERJ1 in response to biotic stresses, such as herbivory and pathogen infection, using an RERJ1-defective mutant. Transcriptome analysis of the rerj1-Tos17 mutant revealed that RERJ1 regulated the expression of a typical family of conserved JA-responsive genes (e.g., terpene synthases, proteinase inhibitors, and jasmonate ZIM domain proteins). Upon exposure to armyworm attack, the rerj1-Tos17 mutant exhibited more severe damage than the wildtype, and significant weight gain of the larvae fed on the mutant was observed. Upon Xanthomonas oryzae infection, the rerj1-Tos17 mutant developed more severe symptoms than the wildtype. Among RERJ1-regulated terpene synthases, linalool synthase expression was markedly disrupted and linalool emission after wounding was significantly decreased in the rerj1-Tos17 mutant. RERJ1 appears to interact with OsMYC2-a master regulator of JA signaling-and many OsJAZ proteins, although no obvious epistatic interaction was detected between them at the transcriptional level. These results indicate that RERJ1 is involved in the transcriptional induction of JA-mediated stress-responsive genes via physical association with OsMYC2 and mediates defense against herbivory and bacterial infection through JA signaling"
Keywords:"Basic Helix-Loop-Helix Transcription Factors/genetics/metabolism Cyclopentanes/metabolism Gene Expression Regulation, Plant Herbivory *Oryza/metabolism Oxylipins/metabolism Plant Proteins/genetics/metabolism Signal Transduction Transcription Factors/metab;"
Notes:"MedlineValea, Ioana Motegi, Atsushi Kawamura, Naoko Kawamoto, Koichi Miyao, Akio Ozawa, Rika Takabayashi, Junji Gomi, Kenji Nemoto, Keiichirou Nozawa, Akira Sawasaki, Tatsuya Shinya, Tomonori Galis, Ivan Miyamoto, Koji Nojiri, Hideaki Okada, Kazunori eng 17H03811/japan society for the promotion of science/ 20H02922/japan society for the promotion of science/ JPJSBP120202002/japan-austria research cooperative program between jsps and fwf/ Netherlands 2021/09/04 Plant Mol Biol. 2022 Jul; 109(4-5):651-666. doi: 10.1007/s11103-021-01186-0. Epub 2021 Sep 2"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 22-11-2024