Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractImpact of the COVID-19 pandemic and control measures on air quality and aerosol light absorption in Southwestern China    Next AbstractCharacteristic fingerprints and volatile flavor compound variations in Liuyang Douchi during fermentation via HS-GC-IMS and HS-SPME-GC-MS »

Faraday Discuss


Title:"Avoiding high ozone pollution in Delhi, India"
Author(s):Chen Y; Beig G; Archer-Nicholls S; Drysdale W; Acton WJF; Lowe D; Nelson B; Lee J; Ran L; Wang Y; Wu Z; Sahu SK; Sokhi RS; Singh V; Gadi R; Nicholas Hewitt C; Nemitz E; Archibald A; McFiggans G; Wild O;
Address:"Lancaster Environment Centre, Lancaster University, Lancaster, UK. y.chen65@lancaster.ac.uk o.wild@lancaster.ac.uk"
Journal Title:Faraday Discuss
Year:2021
Volume:20201127
Issue:
Page Number:502 - 514
DOI: 10.1039/d0fd00079e
ISSN/ISBN:1364-5498 (Electronic) 1359-6640 (Linking)
Abstract:"Surface ozone is a major pollutant threatening public health, agricultural production and natural ecosystems. While measures to improve air quality in megacities such as Delhi are typically aimed at reducing levels of particulate matter (PM), ozone could become a greater threat if these measures focus on PM alone, as some air pollution mitigation steps can actually lead to an increase in surface ozone. A better understanding of the factors controlling ozone production in Delhi and the impact that PM mitigation measures have on ozone is therefore critical for improving air quality. Here, we combine in situ observations and model analysis to investigate the impact of PM reduction on the non-linear relationship between volatile organic compounds (VOC), nitrogen oxides (NO(x)) and ozone. In situ measurements of NO(x), VOC, and ozone were conducted in Delhi during the APHH-India programme in summer (June) and winter (November) 2018. We observed hourly averaged ozone concentrations in the city of up to 100 ppbv in both seasons. We performed sensitivity simulations with a chemical box model to explore the impacts of PM on the non-linear VOC-NO(x)-ozone relationship in each season through its effect on aerosol optical depth (AOD). We find that ozone production is limited by VOC in both seasons, and is particularly sensitive to solar radiation in winter. Reducing NO(x) alone increases ozone, such that a 50% reduction in NO(x) emissions leads to 10-50% increase in surface ozone. In contrast, reducing VOC emissions can reduce ozone efficiently, such that a 50% reduction in VOC emissions leads to approximately 60% reduction in ozone. Reducing PM alone also increases ozone, especially in winter, by reducing its dimming effects on photolysis, such that a 50% reduction in AOD can increase ozone by 25% and it also enhances VOC-limitation. Our results highlight the importance of reducing VOC emissions alongside PM to limit ozone pollution, as well as benefitting control of PM pollution through reducing secondary organic aerosol. This will greatly benefit the health of citizens and the local ecosystem in Delhi, and could have broader application for other megacities characterized by severe PM pollution and VOC-limited ozone production"
Keywords:
Notes:"PubMed-not-MEDLINEChen, Ying Beig, Gufran Archer-Nicholls, Scott Drysdale, Will Acton, W Joe F Lowe, Douglas Nelson, Beth Lee, James Ran, Liang Wang, Yu Wu, Zhijun Sahu, Saroj Kumar Sokhi, Ranjeet S Singh, Vikas Gadi, Ranu Nicholas Hewitt, C Nemitz, Eiko Archibald, Alex McFiggans, Gordon Wild, Oliver eng Research Support, Non-U.S. Gov't England 2020/11/28 Faraday Discuss. 2021 Mar 1; 226:502-514. doi: 10.1039/d0fd00079e. Epub 2020 Nov 27"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 22-11-2024