Title: | Development of volatile organic compounds and their glycosylated precursors in tamarillo (Solanum betaceum Cav.) during fruit ripening: A prediction of biochemical pathway |
Author(s): | Chen X; Fedrizzi B; Kilmartin PA; Quek SY; |
Address: | "School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand. School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand; Riddet Institute, Centre of Research Excellence in Food Research, Palmerston North 4474, New Zealand. Electronic address: sy.quek@auckland.ac.nz" |
DOI: | 10.1016/j.foodchem.2020.128046 |
ISSN/ISBN: | 1873-7072 (Electronic) 0308-8146 (Linking) |
Abstract: | "Key metabolites and flavour-regulation pathways in tamarillo were investigated to explore the development of free and glycosylated volatile organic compounds (VOCs) during fruit maturation. The concentrations of free and bound VOCs were determined by gas chromatography-mass spectrometry analysis. Changes of physical parameters, concentrations of flavour precursors, and activities of key endogenous enzymes were also monitored. A total of 22 free VOCs were identified with C6 alcohols and esters being the major compounds. From the 83 glycosylated VOCs detected, phenols and terpenoids were the dominant components. The concentration of total bound VOCs increased up to 4 times during fruit ripening. Lipoxygenase pathway is confirmed as an important biosynthetic mechanism for the generation of free and glycosylated VOCs during tamarillo ripening. This biosynthesis pathway is highly correlated with the activities of key enzymes and the contents of substrates, especially linolenic acid (p < 0.05 or p < 0.01)" |
Keywords: | Fruit/*growth & development Glycosylation Solanum/growth & development/*metabolism Taste Volatile Organic Compounds/*chemistry/*metabolism Flavour biosynthesis Glycosides Lipoxygenase (LOX) pathway Tamarillo Volatile organic compounds (VOCs); |
Notes: | "MedlineChen, Xiao Fedrizzi, Bruno Kilmartin, Paul A Quek, Siew Young eng England 2020/11/07 Food Chem. 2021 Mar 1; 339:128046. doi: 10.1016/j.foodchem.2020.128046. Epub 2020 Sep 16" |