Title: | Quantifying Ozone-Dependent Emissions of Volatile Organic Compounds from the Human Body |
Author(s): | Qu Y; Zou Z; Weschler CJ; Liu Y; Yang X; |
Address: | "Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, People's Republic of China. Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Department of Building Science, Tsinghua University, Beijing 100084, People's Republic of China. Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey 08854, United States. International Centre for Indoor Environment and Energy, Technical University of Denmark, Lyngby 2800, Denmark. Center for Environment and Health, Peking University, Beijing 100871, People's Republic of China" |
ISSN/ISBN: | 1520-5851 (Electronic) 0013-936X (Linking) |
Abstract: | "Ozone reactions on human body surfaces produce volatile organic compounds (VOCs) that influence indoor air quality. However, the dependence of VOC emissions on the ozone concentration has received limited attention. In this study, we conducted 36 sets of single-person chamber experiments with three volunteers exposed to ozone concentrations ranging from 0 to 32 ppb. Emission fluxes from human body surfaces were measured for 11 targeted skin-oil oxidation products. For the majority of these products, the emission fluxes linearly correlated with ozone concentration, indicating a constant surface yield (moles of VOC emitted per mole of ozone deposited). However, for the second-generation oxidation product 4-oxopentanal, a higher surface yield was observed at higher ozone concentrations. Furthermore, many VOCs have substantial emissions in the absence of ozone. Overall, these results suggest that the complex surface reactions and mass transfer processes involved in ozone-dependent VOC emissions from the human body can be represented using a simplified parametrization based on surface yield and baseline emission flux. Values of these two parameters were quantified for targeted products and estimated for other semiquantified VOC signals, facilitating the inclusion of ozone/skin oil chemistry in indoor air quality models and providing new insights on skin oil chemistry" |
Keywords: | Humans *Volatile Organic Compounds Human Body *Ozone VOCs exposure indoor ozonolysis squalene; |
Notes: | "MedlineQu, Yuekun Zou, Ziwei Weschler, Charles J Liu, Yingjun Yang, Xudong eng Research Support, Non-U.S. Gov't 2023/08/23 Environ Sci Technol. 2023 Sep 5; 57(35):13104-13113. doi: 10.1021/acs.est.3c02340. Epub 2023 Aug 23" |