Title: | Simultaneous Improvement of Mechanical and Fire-Safety Properties of Polymer Composites with Phosphonate-Loaded MOF Additives |
Author(s): | Qi XL; Zhou DD; Zhang J; Hu S; Haranczyk M; Wang DY; |
Address: | "IMDEA Materials Institute , C/Eric Kandel, 2 , Getafe , Madrid 28906 , Spain. School of Chemistry , Sun Yat-sen University , 510275 Guagzhou , China" |
Journal Title: | ACS Appl Mater Interfaces |
ISSN/ISBN: | 1944-8252 (Electronic) 1944-8244 (Linking) |
Abstract: | "Flame-retardant (FR) additives are commonly used to improve the fire safety of synthetic polymers, which are widely employed in manufactured consumer goods. Incorporation of an FR in a polymer typically leads to deterioration of its mechanical properties. It also manifests itself in non-negligible volatile organic compound (VOC) release, which in turn increases environmental risks carried by both the application and disposal of the corresponding consumer goods. Herein, we present a hierarchical strategy for the design of composite materials, which ensures simultaneous improvement of both mechanical and fire-safety properties of polymers while limiting the VOC release. Our strategy employs porous metal-organic framework (MOF) particles to provide a multifunctional interface between the FR molecules and the polymer. Specifically, we demonstrate that the particles of environmentally friendly HKUST-1 MOF can be infused by a modern FR-dimethyl methylphosphonate (DMMP)-and then embedded into widely used unsaturated polyesters. The DMMP-HKUST-1 additive endows the resulting composite material with improved processability, flame retardancy, and mechanical properties. Single-crystal X-ray diffraction, thermogravimetric analysis, and computational modeling of the additive suggest the complete pore filling of HKUST-1 with DMMP molecules being bound to the open metal sites of the MOF" |
Keywords: | flame retardancy hybridization of MOF and polymers metal-organic framework open metal site porous coordination polymer unsaturated polyester; |
Notes: | "PubMed-not-MEDLINEQi, Xiao-Lin Zhou, Dong-Dong Zhang, Jing Hu, Shuang Haranczyk, Maciej Wang, De-Yi eng 2019/05/03 ACS Appl Mater Interfaces. 2019 Jun 5; 11(22):20325-20332. doi: 10.1021/acsami.9b02357. Epub 2019 May 22" |