Title: | In-vehicle carbon dioxide and adverse effects: An air filtration-based intervention study |
Author(s): | Chen RY; Ho KF; Chang TY; Hong GB; Liu CW; Chuang KJ; |
Address: | "School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan. The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China. Department of Occupational Safety and Health, College of Public Health, China Medical University, Taichung, Taiwan. Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan. Department of Information Management, St. Mary's Junior College of Medicine, Nursing and Management, Yilan, Taiwan. Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan. Electronic address: kjc@tmu.edu.tw" |
DOI: | 10.1016/j.scitotenv.2020.138047 |
ISSN/ISBN: | 1879-1026 (Electronic) 0048-9697 (Linking) |
Abstract: | "Drowsiness is considered a potential risk for traffic accidents. Exposure to high carbon dioxide (CO(2)) levels in vehicles may result in unpleasant feeling, fatigue, drowsiness or lethargy among drivers and passengers. However, little is known about whether reducing CO(2) levels in vehicles by air filtration can relieve adverse effects among human subjects during driving. We recruited a panel of 84 healthy participants to drive a vehicle equipped with a CO(2) filtration system for 1 h on a coastal road in a Northern Taiwan rural area. The operation modes of the CO(2) filtration system, including fresh air from open windows without a CO(2) filtration system (Control-mode), fresh air from an air conditioning (AC) system with closed windows and a false CO(2) filtration system in operation (Off-mode) or a true CO(2) filtration system in operation (On-mode), were examined. The repeated measurements of heart rate (HR), blood pressure (BP), CO(2), total volatile organic compounds (TVOCs), particulate matter =2.5 mum in aerodynamic diameter (PM(2.5)) and a simple question about drowsiness were obtained for each participant in three different modes. We found that decreased HR, systolic BP (SBP) and diastolic BP (DBP) and increased drowsiness were associated with increased levels of in-vehicle CO(2). The effects of in-vehicle CO(2) on adverse effects were highest in the Off-mode during driving. In the On-mode, the participants showed slight decreases in HR, SBP and DBP and slight increases in drowsiness. We concluded that the utilization of a CO(2) filtration system can reduce in-vehicle CO(2) levels and modify the effect of in-vehicle CO(2) on HR, BP and drowsiness among human subjects during driving" |
Keywords: | Air filtration Carbon dioxide Cardiovascular effect Drowsiness Epidemiology Indoor air quality; |
Notes: | "PubMed-not-MEDLINEChen, Ruey-Yu Ho, Kin-Fai Chang, Ta-Yuan Hong, Gui-Bing Liu, Chien-Wei Chuang, Kai-Jen eng Netherlands 2020/03/29 Sci Total Environ. 2020 Jun 25; 723:138047. doi: 10.1016/j.scitotenv.2020.138047. Epub 2020 Mar 19" |