Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractWildland smoke exposure values and exhaled breath indicators in firefighters    Next AbstractSolar photocatalytic gas-phase degradation of n-decane--a comparative study using cellulose acetate monoliths coated with P25 or sol-gel TiO(2) films »

Mol Plant Microbe Interact


Title:The transcriptional response of hybrid poplar (Populus trichocarpa x P. deltoides) to infection by Melampsora medusae leaf rust involves induction of flavonoid pathway genes leading to the accumulation of proanthocyanidins
Author(s):Miranda M; Ralph SG; Mellway R; White R; Heath MC; Bohlmann J; Constabel CP;
Address:"Centre for Forest Biology and Department of Biology, University of Victoria, Victoria, BC, Canada"
Journal Title:Mol Plant Microbe Interact
Year:2007
Volume:20
Issue:7
Page Number:816 - 831
DOI: 10.1094/MPMI-20-7-0816
ISSN/ISBN:0894-0282 (Print) 0894-0282 (Linking)
Abstract:"The transcriptional response of hybrid poplar (Populus trichocarpa x P. deltoides) to poplar leaf rust (Melampsora medusae) infection was studied using the Populus 15.5K cDNA microarray. Pronounced changes in the transcriptome were observed, with approximately 20% of genes on the array showing either induction or repression of transcription within the 9-day infection timecourse. A small number of pathogen-defense genes encoding PR-1, chitinases, and other pathogenesis-related proteins were consistently upregulated throughout the experimental period, but most genes were affected only at individual timepoints. The largest number of changes in gene expression was observed late in the infection at 6 to 9 days postinoculation (dpi). At these timepoints, genes encoding enzymes required for proanthocyanidin (condensed tannin) synthesis were upregulated dramatically. Phytochemical analysis confirmed that, late in the infection, proanthocyanidin levels increased in infected leaves. Strongly M. medusae-repressed genes at 9 dpi included previously characterized wound- and herbivore-induced defense genes, which suggests antagonism between the tree responses to insect feeding and M. medusae infection. In this highly compatible plant-pathogen interaction, we postulate that the biotrophic pathogen evades detection and suppresses early host responses"
Keywords:"Basidiomycota/*growth & development Flavonoids/*metabolism Gene Expression Profiling Gene Expression Regulation, Plant Genes, Plant Hybridization, Genetic Molecular Structure Oligonucleotide Array Sequence Analysis Plant Leaves/*genetics/metabolism/microb;"
Notes:"MedlineMiranda, Manoela Ralph, Steven G Mellway, Robin White, Rick Heath, Michele C Bohlmann, Jorg Constabel, C Peter eng Research Support, Non-U.S. Gov't 2007/07/03 Mol Plant Microbe Interact. 2007 Jul; 20(7):816-31. doi: 10.1094/MPMI-20-7-0816"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 22-11-2024