Title: | Integrated electronic skin (e-skin) for harvesting of TENG energy through push-pull ionic electrets and ion-ion hopping mechanism |
Address: | "The Research Institute of Mechatronics, Department of Mechanical Engineering, Changwon National University, Changwon City, South Korea. ravi@chagwon.ac.kr. The Research Institute of Mechatronics, Department of Mechanical Engineering, Changwon National University, Changwon City, South Korea. jisong@changwon.ac.kr" |
DOI: | 10.1038/s41598-021-04555-3 |
ISSN/ISBN: | 2045-2322 (Electronic) 2045-2322 (Linking) |
Abstract: | "The development of highly durable, stretchable, and steady triboelectric nanogenerators (TENGs) is highly desirable to satisfy the tight requirement of energy demand. Here, we presented a novel integrated polymeric membrane that is designed by PEDOT: PSSa-naphthalene sulfonated polyimide (PPNSP)-EMI.BF(4) Electronic skin (e-skin) for potential TENG applications. The proposed TENG e-skin is fabricated by an interconnected architecture with push-pull ionic electrets that can threshold the transfer of charges through an ion-hopping mechanism for the generation of a higher output voltage (Voc) and currents (Jsc) against an electronegative PTFE film. PPNSP was synthesized from the condensation of naphthalene-tetracarboxylic dianhydride, 2,2'-benzidine sulfonic acid, and 4,4'diaminodiphenyl ether through an addition copolymerization protocol, and PEDOT: PSSa was subsequently deposited using the dip-coating method. Porous networked PPNSP e-skin with continuous ion transport nano-channels is synthesized by introducing simple and strong molecular push-pull interactions via intrinsic ions. In addition, EMI.BF(4) ionic liquid (IL) is doped inside the PPNSP skin to interexchange ions to enhance the potential window for higher output Voc and Iscs. In this article, we investigated the push-pull dynamic interactions between PPNSP-EMI.BF(4) e-skin and PTFE and tolerable output performance. The novel PPNSP- EMI.BF(4) e-skin TENG produced upto 49.1 V and 1.03 microA at 1 Hz, 74 V and 1.45 microA at 2 Hz, 122.3 V and 2.21 microA at 3 Hz and 171 V and 3.6 microA at 4 Hz, and 195 V and 4.43 microA at 5 Hz, respectively. The proposed novel TENG device was shown to be highly flexible, highly durable, commercially viable, and a prospective candidate to produce higher electrical charge outputs at various applied frequencies" |
Keywords: | Ions Nanotechnology Polytetrafluoroethylene Prospective Studies *Volatile Organic Compounds *Wearable Electronic Devices; |
Notes: | "MedlineCheedarala, Ravi Kumar Song, Jung Il eng Research Support, Non-U.S. Gov't England 2022/03/11 Sci Rep. 2022 Mar 9; 12(1):3879. doi: 10.1038/s41598-021-04555-3" |