Title: | Sensory properties of wine tannin fractions: implications for in-mouth sensory properties |
Author(s): | McRae JM; Schulkin A; Kassara S; Holt HE; Smith PA; |
Address: | "The Australian Wine Research Institute, Glen Osmond, SA 5064, Australia" |
ISSN/ISBN: | 1520-5118 (Electronic) 0021-8561 (Linking) |
Abstract: | "Different molecular structures of grape tannins have been shown to influence astringency, however, the in-mouth sensory effects of different molecular structures in red wine tannins remains to be established. The objective of this research was to assess the impact of wine tannin structure on in-mouth sensory properties. Wine tannin was isolated from Cabernet Sauvignon wines of two vintages (3 and 7 years old) and separated into two structurally distinct subfractions with liquid-liquid fractionation using butanol and water. The aqueous subfractions had greater mean degree of polymerization (mDp) and contained a higher proportion of epigallocatechin subunits than the butanol-soluble subfractions, while the older wine tannin fractions showed fewer epicatechin gallate subunits than the younger tannin fractions. The red wine had approximately 3:1 mass ratio of the aqueous and butanol tannin subfractions which approximated an equimolar ratio of tannin in each subfraction. Descriptive sensory analysis of the tannin subfractions in model wine at equimolar concentrations revealed that the larger, more water-soluble wine tannin subfractions from both wines were perceived as more astringent than the smaller, more hydrophobic and more highly pigmented butanol-soluble subfractions, which were perceived as hotter and more bitter. Partial least squares analysis indicated that the greater hydrophobicity and color incorporation in the butanol fractions was negatively associated with astringency, and these characteristics are also associated with aged wine tannins. As the larger, water-soluble tannins had a greater impact on the overall wine astringency, winemaking processes that modulate concentrations of these are likely to most significantly influence astringency" |
Keywords: | Astringents/*chemistry Color Female Humans Male Mouth/physiology Tannins/*chemistry Taste/*physiology Vitis/chemistry Volatile Organic Compounds/chemistry Wine/*analysis; |
Notes: | "MedlineMcRae, Jacqui M Schulkin, Alex Kassara, Stella Holt, Helen E Smith, Paul A eng Research Support, Non-U.S. Gov't 2013/01/08 J Agric Food Chem. 2013 Jan 23; 61(3):719-27. doi: 10.1021/jf304239n. Epub 2013 Jan 11" |