Title: | Thiamine Supplementation Alleviates Lipopolysaccharide-Triggered Adaptive Inflammatory Response and Modulates Energy State via Suppression of NFkappaB/p38 MAPK/AMPK Signaling in Rumen Epithelial Cells of Goats |
Author(s): | Ma Y; Elmhadi M; Wang C; Li Z; Zhang H; He B; Zhao X; Zhang Z; Wang H; |
Address: | "Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China. School of Biomedical Sciences, The University of Western Australia, M Block, Queen Elizabeth II Medical Centre, Nedlands, WA 6009, Australia. Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Shepparton, VIC 3647, Australia" |
ISSN/ISBN: | 2076-3921 (Print) 2076-3921 (Electronic) 2076-3921 (Linking) |
Abstract: | "Studies have shown that exogenous thiamine (THI) supplementation can alleviate inflammation and promote rumen epithelial development in goats and cows. This research aimed to evaluate the effect of THI supplementation on LPS-induced inflammation and energy metabolic dysregulation in RECs of goats. Cells were stimulated with either 5 mug/mL THI for 18 h (THI group) or with 5 mug/mL LPS for 6 h (LPS group). The CON group was stimulated with DMEM/F-12 medium without THI for 18 h. The LPTH group was pretreated with THI for 18 h, followed by LPS stimulation for 6 h. THI supplementation decreased the ROS content (p < 0.05), as well as the ratios of phosphorylated (p)-p65 to p65 (p < 0.05) and p-AMPKalpha to AMPKalpha (p < 0.05). Interestingly, when the p38 gene was overexpressed in the LPTH group, the ratio of p-p65 to p65 and p-AMPKalpha to AMPKalpha proteins significantly increased, and ATP content decreased (p < 0.05). Our results suggest that THI possesses anti-inflammatory and metabolic-modulatory effects in RECs. The mechanism is largely related to the suppression of the NF-kappaB/p38 MAPK/AMPK signaling pathway. Additionally, we also revealed that THI supplementation can inhibit LPS-induced oxidative damage and apoptosis to protect mitochondrial function in RECs" |
Keywords: | energy metabolism inflammation mitochondrial function rumen epithelial cells thiamine; |
Notes: | "PubMed-not-MEDLINEMa, Yi Elmhadi, Mawda Wang, Chao Li, Zelin Zhang, Hao He, Banglin Zhao, Xiujuan Zhang, Zhenbin Wang, Hongrong eng Switzerland 2022/10/28 Antioxidants (Basel). 2022 Oct 18; 11(10):2048. doi: 10.3390/antiox11102048" |