Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous Abstract[Target and non-target screening of volatile organic compounds in industrial exhaust gas using thermal desorption-gas chromatography-mass spectrometry]    Next AbstractVapor Intrusion Investigations and Decision-Making: A Critical Review »

J Colloid Interface Sci


Title:Promote hydroxyl radical and key intermediates formation for deep toluene mineralization via unique electron transfer channel
Author(s):Ma H; Wang X; Jin R; Tan T; Zhou X; Fang R; Shen Y; Dong F; Sun Y;
Address:"National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China; School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China. National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China. Hangzhou Tianliang Detection Technology COM.,LTD, Hangzhou 310000, China. Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China; State Centre for International Cooperation on Designer Low carbon and Environmental Materials (CDLCEM), School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China. School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China. Electronic address: syhsyj@163.com"
Journal Title:J Colloid Interface Sci
Year:2023
Volume:20221102
Issue:Pt B
Page Number:704 - 713
DOI: 10.1016/j.jcis.2022.10.160
ISSN/ISBN:1095-7103 (Electronic) 0021-9797 (Linking)
Abstract:"The degradation and mineralization of volatile organic compounds (VOCs) in gas-solid phase photocatalytic systems suffer great challenges due to the low electron transfer efficiency and slow benzene ring-opening kinetics. Hence, a heterojunction photocatalyst of Bi(2)SiO(5)/TiO(2) has been synthesized by a facile method. Bi(2)SiO(5)/TiO(2) shows the ability of mineralizing toluene to CO(2) with a degradation rate of 85.5%, while TiO(2) is 49.0% and presents a continuous deactivation. Experimental characterizations and theoretical calculations indicate that a unique electron transfer channel of Bi/Si-O-Ti can be established in the heterojunction sample due to the coupling of the interface. The channel facilitates electron transfer to the catalyst surface, generating *OH radicals with strong oxidation and ring-opening ability. Moreover, in-situ DRIFTS reveal that the selective generation of benzoic acid on Bi(2)SiO(5)/TiO(2) heterojunction plays a critical role in the ring-opening of toluene. This work discloses a novel paradigm to obtain the deep and durable photocatalytic mineralization of toluene"
Keywords:*Toluene *Hydroxyl Radical Electrons Titanium Charge transfer Heterojunction Photocatalysis Reaction intermediates Toluene degradation;
Notes:"MedlineMa, Hao Wang, Xuemei Jin, Ruiben Tan, Tianqi Zhou, Xi Fang, Ruimei Shen, Yu Dong, Fan Sun, Yanjuan eng 2022/11/09 J Colloid Interface Sci. 2023 Jan 15; 630(Pt B):704-713. doi: 10.1016/j.jcis.2022.10.160. Epub 2022 Nov 2"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 22-11-2024