Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous Abstract[A simple method for analyzing insect pheromone at the nanogram level by coupling headspace adsorption and thermal desorption injection by gas chromatography with a packed syringe]    Next AbstractTranscriptomic analysis of flower development in wintersweet (Chimonanthus praecox) »

Chemosphere


Title:PTR-MS measurement of partition coefficients of reduced volatile sulfur compounds in liquids from biotrickling filters
Author(s):Liu D; Feilberg A; Nielsen AM; Adamsen AP;
Address:"Dept. of Engineering, Aarhus University, Blichers Alle 20, DK-8830 Tjele, Denmark"
Journal Title:Chemosphere
Year:2013
Volume:20120907
Issue:4
Page Number:1396 - 1403
DOI: 10.1016/j.chemosphere.2012.07.068
ISSN/ISBN:1879-1298 (Electronic) 0045-6535 (Linking)
Abstract:"Biological air filtration for reduction of emissions of volatile sulfur compounds (e.g., hydrogen sulfide, methanethiol and dimethyl sulfide) from livestock production facilities is challenged by poor partitioning of these compounds into the aqueous biofilm or filter trickling water. In this study, Henry's law constants of reduced volatile sulfur compounds were measured for deionized water, biotrickling filter liquids (from the first and second stages of a two-stage biotrickling filter), and NaCl solutions by a dynamic method using Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) at a temperature range of 3-45 degrees C. NaCl solutions were used to estimate salting-out constants up to an ionic strength of 0.7 M in order to evaluate the effect of ionic strength on partitioning between air and biofilter liquids. Thermodynamic parameters (enthalpy and entropy of phase exchange) were obtained from the measured partition coefficients as a function of temperature. The results show that the partition coefficients of organic sulfur compounds in the biotrickling filter liquids were generally very close to the corresponding partition coefficients in deionized water. Based on the estimated ionic strength of biofilter liquids, it is assessed that salting-out effects are of no importance for these compounds. For H(2)S, a higher enthalpy of air-liquid partitioning was observed for 2nd stage filter liquid, but not for 1st stage filter liquid. In general, the results show that co-solute effects for sulfur compounds can be neglected in numerical biofilter models and that the uptake of volatile sulfur compounds in biotrickling filter liquids cannot be increased by decreasing ionic strength"
Keywords:Air Pollutants/analysis/*chemistry Air Pollution/prevention & control Animal Husbandry Environmental Restoration and Remediation/*instrumentation/methods Filtration/*instrumentation Mass Spectrometry Sulfur Compounds/analysis/*chemistry;
Notes:"MedlineLiu, Dezhao Feilberg, Anders Nielsen, Anders Michael Adamsen, Anders Peter S eng Research Support, Non-U.S. Gov't England 2012/09/11 Chemosphere. 2013 Jan; 90(4):1396-403. doi: 10.1016/j.chemosphere.2012.07.068. Epub 2012 Sep 7"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 22-11-2024