Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractToxicomethylomics revisited: A state-of-the-science review about DNA methylation modifications in blood cells from workers exposed to toxic agents    Next AbstractUse of ultrasound at a pilot scale to accelerate the ageing of sherry vinegar »

Front Microbiol


Title:Surviving in the Brine: A Multi-Omics Approach for Understanding the Physiology of the Halophile Fungus Aspergillus sydowii at Saturated NaCl Concentration
Author(s):Jimenez-Gomez I; Valdes-Munoz G; Moreno-Ulloa A; Perez-Llano Y; Moreno-Perlin T; Silva-Jimenez H; Barreto-Curiel F; Sanchez-Carbente MDR; Folch-Mallol JL; Gunde-Cimerman N; Lago-Leston A; Batista-Garcia RA;
Address:"Centro de Investigacion en Dinamica Celular, Instituto de Investigacion en Ciencias Basicas y Aplicadas, Universidad Autonoma del Estado de Morelos, Cuernavaca, Mexico. Departamento de Innovacion Biomedica, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Ensenada, Mexico. Centro de Ciencias Genomicas, Universidad Nacional Autonoma de Mexico, Cuernavaca, Mexico. Instituto de Investigaciones Oceanologicas, Universidad Autonoma de Baja California, Ensenada, Mexico. Facultad de Ciencias Marinas, Universidad Autonoma de Baja California, Ensenada, Mexico. Centro de Investigacion en Biotecnologia, Universidad Autonoma del Estado de Morelos, Cuernavaca, Mexico. Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia"
Journal Title:Front Microbiol
Year:2022
Volume:20220502
Issue:
Page Number:840408 -
DOI: 10.3389/fmicb.2022.840408
ISSN/ISBN:1664-302X (Print) 1664-302X (Electronic) 1664-302X (Linking)
Abstract:"Although various studies have investigated osmoadaptations of halophilic fungi to saline conditions, only few analyzed the fungal mechanisms occurring at saturated NaCl concentrations. Halophilic Aspergillus sydowii is a model organism for the study of molecular adaptations of filamentous fungi to hyperosmolarity. For the first time a multi-omics approach (i.e., transcriptomics and metabolomics) was used to compare A. sydowii at saturated concentration (5.13 M NaCl) to optimal salinity (1 M NaCl). Analysis revealed 1,842 genes differentially expressed of which 704 were overexpressed. Most differentially expressed genes were involved in metabolism and signal transduction. A gene ontology multi-scale network showed that ATP binding constituted the main network node with direct interactions to phosphorelay signal transduction, polysaccharide metabolism, and transferase activity. Free amino acids significantly decreased and amino acid metabolism was reprogrammed at 5.13 M NaCl. mRNA transcriptional analysis revealed upregulation of genes involved in methionine and cysteine biosynthesis at extreme water deprivation by NaCl. No modifications of membrane fatty acid composition occurred. Upregulated genes were involved in high-osmolarity glycerol signal transduction pathways, biosynthesis of beta-1,3-glucans, and cross-membrane ion transporters. Downregulated genes were related to the synthesis of chitin, mannose, cell wall proteins, starvation, pheromone synthesis, and cell cycle. Non-coding RNAs represented the 20% of the total transcripts with 7% classified as long non-coding RNAs (lncRNAs). The 42% and 69% of the total lncRNAs and RNAs encoding transcription factors, respectively, were differentially expressed. A network analysis showed that differentially expressed lncRNAs and RNAs coding transcriptional factors were mainly related to the regulation of metabolic processes, protein phosphorylation, protein kinase activity, and plasma membrane composition. Metabolomic analyses revealed more complex and unknown metabolites at saturated NaCl concentration than at optimal salinity. This study is the first attempt to unravel the molecular ecology of an ascomycetous fungus at extreme water deprivation by NaCl (5.13 M). This work also represents a pioneer study to investigate the importance of lncRNAs and transcriptional factors in the transcriptomic response to high NaCl stress in halophilic fungi"
Keywords:extremophilic fungi halophilic fungus low water activity metabolomics salt stress saturated NaCl solution transcriptomics water deprivation;
Notes:"PubMed-not-MEDLINEJimenez-Gomez, Irina Valdes-Munoz, Gisell Moreno-Ulloa, Aldo Perez-Llano, Yordanis Moreno-Perlin, Tonatiuh Silva-Jimenez, Hortencia Barreto-Curiel, Fernando Sanchez-Carbente, Maria Del Rayo Folch-Mallol, Jorge Luis Gunde-Cimerman, Nina Lago-Leston, Asuncion Batista-Garcia, Ramon Alberto eng Switzerland 2022/05/20 Front Microbiol. 2022 May 2; 13:840408. doi: 10.3389/fmicb.2022.840408. eCollection 2022"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 22-11-2024