Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous Abstract"Spoilage potential of Vagococcus salmoninarum in preservative-free, MAP-stored brown shrimp and differentiation from Brochothrix thermosphacta on streptomycin thallous acetate actidione agar"    Next AbstractSimplification of a complex microbial antilisterial consortium to evaluate the contribution of its flora in uncooked pressed cheese »

Chem Sci


Title:Stabilization of volatile Ti(BH(4))(3) by nano-confinement in a metal-organic framework
Author(s):Callini E; Szilagyi PA; Paskevicius M; Stadie NP; Rehault J; Buckley CE; Borgschulte A; Zuttel A;
Address:"EPFL , Swiss Federal Institute of Technology , Laboratory of Materials for Renewable Energy , Rue de l'Industrie 17 , 1950 Sion , Switzerland . Email: elsa.callini@epfl.ch. Empa , Swiss Federal Laboratories for Materials Science and Technology , Laboratory 505 Hydrogen & Energy , Uberlandstrasse 129 , 8600 Dubendorf , Switzerland. University of Greenwich , Central Avenue, Medway Campus , Chatham Maritime ME4 4TB , UK. Department of Physics, Astronomy and Medical Radiation Sciences , Curtin University , GPO Box U1987 , Perth , WA 6845 , Australia. Department of Chemistry & iNANO , Aarhus University , Langelandsgade 140 , Aarhus 8000 , Denmark. Paul Scherrer Institute , PSI , CH-5232 Villigen , Switzerland. Empa , Swiss Federal Laboratories for Materials Science and Technology , Laboratory 502 Advanced Analytical Technologies , Uberlandstrasse 129 , 8600 Dubendorf , Switzerland"
Journal Title:Chem Sci
Year:2016
Volume:20151016
Issue:1
Page Number:666 - 672
DOI: 10.1039/c5sc03517a
ISSN/ISBN:2041-6520 (Print) 2041-6539 (Electronic) 2041-6520 (Linking)
Abstract:"Liquid complex hydrides are a new class of hydrogen storage materials with several advantages over solid hydrides, e.g. they are flexible in shape, they are a flowing fluid and their convective properties facilitate heat transport. The physical and chemical properties of a gaseous hydride change when the molecules are adsorbed on a material with a large specific surface area, due to the interaction of the adsorbate with the surface of the host material and the reduced number of collisions between the hydride molecules. In this paper we report the synthesis and stabilization of gaseous Ti(BH(4))(3). The compound was successfully stabilized through adsorption in nanocavities. Ti(BH(4))(3), upon synthesis in its pure form, spontaneously and rapidly decomposes into diborane and titanium hydride at room temperature in an inert gas, e.g. argon. Ti(BH(4))(3) adsorbed in the cavities of a metal organic framework is stable for several months at ambient temperature and remains stable up to 350 K under vacuum. The adsorbed Ti(BH(4))(3) reaches approximately twice the density of the gas phase. The specific surface area (BET, N(2) adsorption) of the MOF decreased from 1200 m(2) g(-1) to 770 m(2) g(-1) upon Ti(BH(4))(3) adsorption"
Keywords:
Notes:"PubMed-not-MEDLINECallini, E Szilagyi, P A Paskevicius, M Stadie, N P Rehault, J Buckley, C E Borgschulte, A Zuttel, A eng England 2016/01/01 Chem Sci. 2016 Jan 1; 7(1):666-672. doi: 10.1039/c5sc03517a. Epub 2015 Oct 16"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 22-11-2024