Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractGas chromatographic-mass spectrometric analysis of urinary volatile organic metabolites: Optimization of the HS-SPME procedure and sample storage conditions    Next AbstractDisaccharides: Influence on Volatiles and Phenolics of Sour Cherry Juice »

Anal Bioanal Chem


Title:Biotransformation of selenium in the mycelium of the fungus Phycomyces blakesleeanus
Author(s):Zizic M; Stanic M; Aquilanti G; Bajuk-Bogdanovic D; Brankovic G; Rodic I; Zivic M; Zakrzewska J;
Address:"Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11030, Belgrade, Serbia. mzizic@imsi.rs. Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11030, Belgrade, Serbia. Elettra Sincrotrone Trieste S.C.P.A., Basovizza, Trieste, Italy. Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000, Belgrade, Serbia. Faculty of Biology, University of Belgrade, Studentski trg 12-16, 11000, Belgrade, Serbia. Institute of General and Physical Chemistry, Studentski trg 12-16, 11000, Belgrade, Serbia"
Journal Title:Anal Bioanal Chem
Year:2022
Volume:20220627
Issue:20
Page Number:6213 - 6222
DOI: 10.1007/s00216-022-04191-4
ISSN/ISBN:1618-2650 (Electronic) 1618-2642 (Linking)
Abstract:"Biotransformation of toxic selenium ions to non-toxic species has been mainly focused on biofortification of microorganisms and production of selenium nanoparticles (SeNPs), while far less attention is paid to the mechanisms of transformation. In this study, we applied a combination of analytical techniques with the aim of characterizing the SeNPs themselves as well as monitoring the course of selenium transformation in the mycelium of the fungus Phycomyces blakesleeanus. Red coloration and pungent odor that appeared after only a few hours of incubation with 10 mM Se(+4) indicate the formation of SeNPs and volatile methylated selenium compounds. SEM-EDS confirmed pure selenium NPs with an average diameter of 57 nm, which indicates potentially very good medical, optical, and photoelectric characteristics. XANES of mycelium revealed concentration-dependent mechanisms of reduction, where 0.5 mM Se(+4) led to the predominant formation of Se-S-containing organic molecules, while 10 mM Se(+4) induced production of biomethylated selenide (Se(-2)) in the form of volatile dimethylselenide (DMSe) and selenium nanoparticles (SeNPs), with the SeNPs/DMSe ratio rising with incubation time. Several structural forms of elemental selenium, predominantly monoclinic Se(8) chains, together with trigonal Se polymer chain, Se(8) and Se(6) ring structures, were detected by Raman spectroscopy"
Keywords:Biotransformation Mycelium *Nanoparticles/chemistry *Phycomyces/metabolism *Selenium/chemistry Biogenic selenium nanoparticles Phycomyces blakesleeanus Selenium biotransformation Volatile selenium compounds;
Notes:"MedlineZizic, Milan Stanic, Marina Aquilanti, Giuliana Bajuk-Bogdanovic, Danica Brankovic, Goran Rodic, Ivanka Zivic, Miroslav Zakrzewska, Joanna eng 451-03-68/2022-14/ 200178/Ministry of Education, Science and Technological Development of Republic of Serbia/ 451-03-68/2022-14/200051/Ministry of Education, Science and Technological Development of Republic of Serbia/ 451-03-68/2022-14/200053/Ministry of Education, Science and Technological Development of Republic of Serbia/ 20200229/International Atomic Energy Agency (IAEA)/ Germany 2022/06/28 Anal Bioanal Chem. 2022 Aug; 414(20):6213-6222. doi: 10.1007/s00216-022-04191-4. Epub 2022 Jun 27"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 22-11-2024