Title: | Heterologous expression of the Glycine soja Kunitz-type protease inhibitor GsKTI improves resistance to drought stress and Helicoverpa armigera in transgenic Arabidopsis lines |
Author(s): | Zhang Y; Guo W; Cao D; Chen L; Yang H; Chen H; Chen S; Hao Q; Qiu D; Shan Z; Yang Z; Yuan S; Zhang C; Shen X; Zhou X; |
Address: | "Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China. Agricultural College, Guizhou University, Guiyang, 550025, China. Electronic address: xjshen@gzu.edu.cn" |
DOI: | 10.1016/j.plaphy.2023.107915 |
ISSN/ISBN: | 1873-2690 (Electronic) 0981-9428 (Linking) |
Abstract: | "Kunitz-like protease inhibitors (KTIs) have been identified to play critical roles in insect defense, but evidence for their involvement in drought stress is sparse. The aim of this study was to identify and functionally characterize a Kunitz-like protease inhibitor, GsKTI, from the wild soybean (Glycine soja) variety ED059. Expression patterns suggest that drought stress and insect herbivory may induce GsKTI transcript levels. Transgenic Arabidopsis lines overexpressing GsKTI have been shown to exhibit enhanced drought tolerance by regulating the ABA signaling pathway and increasing xylem cell number. Transgenic Arabidopsis leaves overexpressing GsKTI interfered with insect digestion and thus had a negative effect on the growth of Helicoverpa armigera. It is concluded that GsKTI increases resistance to drought stress and insect attack in transgenic Arabidopsis lines" |
Keywords: | "Animals *Arabidopsis/metabolism Soybeans/metabolism Protease Inhibitors/pharmacology/metabolism Droughts Plant Proteins/genetics *Fabaceae/metabolism *Moths/metabolism Glycine/metabolism Plants, Genetically Modified/metabolism Stress, Physiological/geneti;" |
Notes: | "MedlineZhang, Yongxing Guo, Wei Cao, Dong Chen, Limiao Yang, Hongli Chen, Haifeng Chen, Shuilian Hao, Qingnan Qiu, Dezhen Shan, Zhihui Yang, Zhonglu Yuan, Songli Zhang, Chanjuan Shen, Xinjie Zhou, Xinan eng France 2023/08/04 Plant Physiol Biochem. 2023 Sep; 202:107915. doi: 10.1016/j.plaphy.2023.107915. Epub 2023 Jul 26" |