|
J Environ Sci (China)
Title: | "Characteristics of atmospheric volatile organic compounds in urban area of Beijing: Variations, photochemical reactivity and source apportionment" |
|
Author(s): | Zhang L; Li H; Wu Z; Zhang W; Liu K; Cheng X; Zhang Y; Li B; Chen Y; |
|
Address: | "State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China. State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Collaborative Innovation Center on Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China. State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China. School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China. Shenhua Group Zhungeer Energy Co., Ltd, Gangue Power Company, Ordos 017100, China. State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China. Electronic address: zhangyj@craes.org.cn" |
|
Journal Title: | J Environ Sci (China) |
Year: | 2020 |
Volume: | 20200504 |
Issue: | |
Page Number: | 190 - 200 |
DOI: | 10.1016/j.jes.2020.03.023 |
|
ISSN/ISBN: | 1001-0742 (Print) 1001-0742 (Linking) |
|
Abstract: | "Atmospheric volatile organic compounds (VOCs) were observed by an on-line gas chromatography-flame ionization detector monitoring system from November 2016 to August 2017 in Beijing. The average concentrations were winter (40.27 +/- 25.25 mug/m(3)) > autumn (34.25 +/- 19.90 microg/m(3)) > summer (32.53 +/- 17.39 microg/m(3)) > spring (24.72 +/- 17.22 microg/m(3)). Although benzene (15.70%), propane (11.02%), ethane (9.32%) and n-butane (6.77%) were the most abundant species, ethylene (14.07%) and propene (11.20%) were the key reactive species to ozone formation potential (OFP), and benzene, toluene, ethylbenzene, m-xylene + p-xylene and o-xylene (54.13%) were the most reactive species to secondary organic aerosol formation potential (SOAFP). The diurnal and seasonal variations indicated that diesel vehicle emission during early morning, gasoline vehicle emission at the traffic rush hours and coal burning during the heating period might be important sources. Five major sources were further identified by positive matrix factorization (PMF). The vehicle exhaust (gasoline exhaust and diesel exhaust) was found to be contributed most to atmospheric VOCs, with 43.59%, 41.91%, 50.45% and 43.91%, respectively in spring, summer, autumn and winter; while solvent usage contributed least, with 11.10%, 7.13%, 14.00% and 19.87%, respectively. Biogenic emission sources (13.11%) were only identified in summer. However, both vehicle exhaust and solvent usage were identified to be the key sources considering contributions to the OFP and SOAFP. Besides, the contributions of combustion during heating period and gasoline evaporation source during warm seasons to OFP and SOAFP should not be overlooked" |
|
Keywords: | Air Pollutants/*analysis Beijing China Environmental Monitoring Vehicle Emissions/analysis Volatile Organic Compounds/*analysis Key reactive species Ozone formation potential and secondary organic aerosol formation potential Seasonal and diurnal variation; |
|
Notes: | "MedlineZhang, Lihui Li, Hong Wu, Zhenhai Zhang, Weiqi Liu, Kankan Cheng, Xi Zhang, Yujie Li, Bin Chen, Yizhen eng Netherlands 2020/07/13 J Environ Sci (China). 2020 Sep; 95:190-200. doi: 10.1016/j.jes.2020.03.023. Epub 2020 May 4" |
|
|
|
|
|
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 22-11-2024
|