Title: | High-Sensitivity Micro-Gas Chromatograph-Photoionization Detector for Trace Vapor Detection |
Author(s): | Wei-Hao Li M; Ghosh A; Venkatasubramanian A; Sharma R; Huang X; Fan X; |
Address: | "Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States. Center for Wireless Integrated MicroSensing and Systems (WIMS2), University of Michigan, Ann Arbor, Michigan 48109, United States. Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, United States" |
DOI: | 10.1021/acssensors.1c00482 |
ISSN/ISBN: | 2379-3694 (Electronic) 2379-3694 (Linking) |
Abstract: | "Rapid in situ detection and analysis of trace vapor concentrations at a sub-parts per billion to parts per trillion level remains a challenge for many applications such as indoor air-quality analysis and detection of explosives and narcotics. Micro-gas chromatography (muGC) together with a micro-photoionization detector (muPID) is a prominent method for portable analysis of complex vapor mixtures, but current muPID technology demonstrates poor detection performance compared to benchtop flame ionization detectors (FIDs). This work demonstrates the development of a significantly improved muPID with a sub-picogram detection limit (as low as approximately 0.2 pg) comparable to or exceeding that of a benchtop FID, with a large linear dynamic range (>4 orders of magnitude) and robustness (high stability over 200 h of plasma activation). Based on this muPID, a complete muGC-PID system was built and tested on standard sample chromatograms in a laboratory setting to show the system's analytical capabilities and the detection limit down to sub-parts per trillion concentrations (as low as 0.14 ppt). Practical in-field chromatograms on breath and car exhaust were also generated to demonstrate applicability for in situ experimentation. This work shows that muGC-PID systems can be competitive with traditional GC-FID methods and thus opens a door to rapid trace vapor analysis in the field" |
Keywords: | "Chromatography, Gas *Gases high sensitivity low detection limit photoionization detector portable gas chromatography trace vapor analysis volatile organic compounds;" |
Notes: | "MedlineWei-Hao Li, Maxwell Ghosh, Abhishek Venkatasubramanian, Anandram Sharma, Ruchi Huang, Xiaolu Fan, Xudong eng R01 OH011082/OH/NIOSH CDC HHS/ Research Support, U.S. Gov't, Non-P.H.S. Research Support, U.S. Gov't, P.H.S. 2021/05/25 ACS Sens. 2021 Jun 25; 6(6):2348-2355. doi: 10.1021/acssensors.1c00482. Epub 2021 May 24" |