Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractAtmospheric concentrations and fluxes of organic compounds in the northern San Francisco Estuary    Next AbstractCurrent Status of Air Toxics Management and Its Strategies for Controlling Emissions in Taiwan »

Metabolites


Title:"Exploring the Biologically Active Metabolites Produced by Bacillus cereus for Plant Growth Promotion, Heat Stress Tolerance, and Resistance to Bacterial Soft Rot in Arabidopsis"
Author(s):Tsai SH; Hsiao YC; Chang PE; Kuo CE; Lai MC; Chuang HW;
Address:"Department of Bioagricultural Sciences, National Chiayi University, Chiayi 600355, Taiwan"
Journal Title:Metabolites
Year:2023
Volume:20230522
Issue:5
Page Number: -
DOI: 10.3390/metabo13050676
ISSN/ISBN:2218-1989 (Print) 2218-1989 (Electronic) 2218-1989 (Linking)
Abstract:"Eight gene clusters responsible for synthesizing bioactive metabolites associated with plant growth promotion were identified in the Bacillus cereus strain D1 (BcD1) genome using the de novo whole-genome assembly method. The two largest gene clusters were responsible for synthesizing volatile organic compounds (VOCs) and encoding extracellular serine proteases. The treatment with BcD1 resulted in an increase in leaf chlorophyll content, plant size, and fresh weight in Arabidopsis seedlings. The BcD1-treated seedlings also accumulated higher levels of lignin and secondary metabolites including glucosinolates, triterpenoids, flavonoids, and phenolic compounds. Antioxidant enzyme activity and DPPH radical scavenging activity were also found to be higher in the treated seedlings as compared with the control. Seedlings pretreated with BcD1 exhibited increased tolerance to heat stress and reduced disease incidence of bacterial soft rot. RNA-seq analysis showed that BcD1 treatment activated Arabidopsis genes for diverse metabolite synthesis, including lignin and glucosinolates, and pathogenesis-related proteins such as serine protease inhibitors and defensin/PDF family proteins. The genes responsible for synthesizing indole acetic acid (IAA), abscisic acid (ABA), and jasmonic acid (JA) were expressed at higher levels, along with WRKY transcription factors involved in stress regulation and MYB54 for secondary cell wall synthesis. This study found that BcD1, a rhizobacterium producing VOCs and serine proteases, is capable of triggering the synthesis of diverse secondary metabolites and antioxidant enzymes in plants as a defense strategy against heat stress and pathogen attack"
Keywords:RNA-seq analysis de novo whole-genome assembly serine proteases volatile organic compounds;
Notes:"PubMed-not-MEDLINETsai, Sih-Huei Hsiao, Yi-Chun Chang, Peter E Kuo, Chen-En Lai, Mei-Chun Chuang, Huey-Wen eng Switzerland 2023/05/26 Metabolites. 2023 May 22; 13(5):676. doi: 10.3390/metabo13050676"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 22-11-2024