Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractMass psychogenic illness: psychological predisposition and iatrogenic pseudo-vocal cord dysfunction and pseudo-reactive airways disease syndrome    Next AbstractIsoprenoid emissions of Quercus spp. (Q. suber and Q. ilex) in mixed stands contrasting in interspecific genetic introgression »

Chemosphere


Title:A critical compilation of Henry's law constant temperature dependence relations for organic compounds in dilute aqueous solutions
Author(s):Staudinger J; Roberts PV;
Address:"Center for Sustainable Systems, School of Natural Resources & the Environment, University of Michigan, Ann Arbor 48109-1115, USA. jstaudin@umich.edu"
Journal Title:Chemosphere
Year:2001
Volume:44
Issue:4
Page Number:561 - 576
DOI: 10.1016/s0045-6535(00)00505-1
ISSN/ISBN:0045-6535 (Print) 0045-6535 (Linking)
Abstract:"A comprehensive compilation of published studies reporting directly measured experimental determinations of Henry's law constant (HLC) temperature dependence relationships for organic compounds in dilute, non-saline aqueous solutions under ambient conditions was conducted. From this effort, 55 such studies (covering 204 organic compounds) were identified, critically reviewed, summarized and discussed. Of the 204 compounds, 57 were studied in more than one investigation. For the 57 'multi-studied' compounds, relatively good agreement (averaging within 20-30%) was found between the results from different investigations. Given such results, a 'consensus' relationship (i.e., an average temperature dependence relation) was generated for each of the multi-studied compounds. Overall, considering relations established for 197 of the 204 compounds investigated (the results for the other 7 compounds being excluded due to poor correlation coefficients), the average slope of the temperature dependence line was found to correspond to an increase in HLC values by a factor of 1.88 (i.e., an 88% increase) per 10 degrees C rise in temperature (thermodynamically equivalent to an average enthalpy of volatilization of 47 kJ/mole). The associated range found for the temperature dependence slope corresponds to an increase in HLC values by a factor ranging from 1.12 to 3.55 (i.e., a 12-255% increase) per 10 degrees C rise (equivalent enthalpy of volatilization range: 8-93 kJ/mole). The wide range of slope values found indicates that serious errors may result if one applies the commonly cited 'rule of thumb' that HLC values double per 10 degrees C rise in temperature to a specific compound. In light of this finding, when faced with a lack of data, a prudent course for practitioners to take appears to be conducting a laboratory study to determine the exact temperature dependence for the compound(s) of interest"
Keywords:"Chemical Phenomena Chemistry, Physical *Environmental Pollutants *Models, Theoretical *Organic Chemicals Solubility Temperature Volatilization;"
Notes:"MedlineStaudinger, J Roberts, P V eng England 2001/08/03 Chemosphere. 2001 Aug; 44(4):561-76. doi: 10.1016/s0045-6535(00)00505-1"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 22-11-2024