Title: | Effect of hydrophilic organic seed aerosols on secondary organic aerosol formation from ozonolysis of alpha-pinene |
Author(s): | Song C; Zaveri RA; Shilling JE; Alexander ML; Newburn M; |
Address: | "Atmospheric Sciences & Global Change Division, Pacific Northwest National Laboratory, Richland, Washington, USA. chen.song@pnnl.gov" |
ISSN/ISBN: | 1520-5851 (Electronic) 0013-936X (Linking) |
Abstract: | "Gas-particle partitioning theory is widely used in atmospheric models to predict organic aerosol loadings. This theory predicts that secondary organic aerosol (SOA) yield of an oxidized volatile organic compound product will increase as the mass loading of preexisting organic aerosol increases. In a previous work, we showed that the presence of model hydrophobic primary organic aerosol (POA) had no detectable effect on the SOA yields from ozonolysis of alpha-pinene, suggesting that the condensing SOA compounds form a separate phase from the preexisting POA. However, a substantial faction of atmospheric aerosol is composed of polar, hydrophilic organic compounds. In this work, we investigate the effects of model hydrophilic organic aerosol (OA) species such as fulvic acid, adipic acid, and citric acid on the gas-particle partitioning of SOA from alpha-pinene ozonolysis. The results show that only citric acid seed significantly enhances the absorption of alpha-pinene SOA into the particle-phase. The other two seed particles have a negligible effect on the alpha-pinene SOA yields, suggesting that alpha-pinene SOA forms a well-mixed organic aerosol phase with citric acid and a separate phase with adipic acid and fulvic acid. This finding highlights the need to improve the thermodynamics treatment of organics in current aerosol models that simply lump all hydrophilic organic species into a single phase, thereby potentially introducing an erroneous sensitivity of SOA mass to emitted OA species" |
Keywords: | "Aerosols/*chemistry Air Pollutants/chemistry Bicyclic Monoterpenes Citric Acid/chemistry Models, Chemical Molecular Structure Monoterpenes/*chemistry Ozone/*chemistry Particle Size Seeds/*chemistry Thermodynamics Volatile Organic Compounds/*chemistry;" |
Notes: | "MedlineSong, Chen Zaveri, Rahul A Shilling, John E Alexander, M Lizabeth Newburn, Matt eng Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. 2011/07/28 Environ Sci Technol. 2011 Sep 1; 45(17):7323-9. doi: 10.1021/es201225c. Epub 2011 Aug 8" |