Title: | A context-dependent alarm signal in the ant Temnothorax rugatulus |
Author(s): | Sasaki T; Holldobler B; Millar JG; Pratt SC; |
Address: | "Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK School of Life Sciences and Center for Social Dynamics and Complexity, Arizona State University, Tempe, AZ 85287, USA takao.sasaki@zoo.ox.ac.uk. School of Life Sciences and Center for Social Dynamics and Complexity, Arizona State University, Tempe, AZ 85287, USA Biocenter, Behavioral Physiology and Sociobiology, University of Wurzburg, D-97074 Wurzburg, Germany. Department of Entomology, University of California, Riverside, 3401 Watkins Drive, Riverside, CA 92521, USA. School of Life Sciences and Center for Social Dynamics and Complexity, Arizona State University, Tempe, AZ 85287, USA" |
ISSN/ISBN: | 1477-9145 (Electronic) 0022-0949 (Linking) |
Abstract: | "Because collective cognition emerges from local signaling among group members, deciphering communication systems is crucial to understanding the underlying mechanisms. Alarm signals are widespread in the social insects and can elicit a variety of behavioral responses to danger, but the functional plasticity of these signals has not been well studied. Here we report an alarm pheromone in the ant Temnothorax rugatulus that elicits two different behaviors depending on context. When an ant was tethered inside an unfamiliar nest site and unable to move freely, she released a pheromone from her mandibular gland that signaled other ants to reject this nest as a potential new home, presumably to avoid potential danger. When the same pheromone was presented near the ants' home nest, they were instead attracted to it, presumably to respond to a threat to the colony. We used coupled gas chromatography/mass spectrometry to identify candidate compounds from the mandibular gland and tested each one in a nest choice bioassay. We found that 2,5-dimethylpyrazine was sufficient to induce rejection of a marked new nest and also to attract ants when released at the home nest. This is the first detailed investigation of chemical communication in the leptothoracine ants. We discuss the possibility that this pheromone's deterrent function can improve an emigrating colony's nest site selection performance" |
Keywords: | "Animals Ants/*physiology Behavior, Animal/*physiology Choice Behavior Female Gas Chromatography-Mass Spectrometry Pheromones/*physiology Pyrazines/*chemistry Alarm pheromone Collective decision-making Temnothorax;" |
Notes: | "MedlineSasaki, Takao Holldobler, Bert Millar, Jocelyn G Pratt, Stephen C eng Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. England 2014/07/12 J Exp Biol. 2014 Sep 15; 217(Pt 18):3229-36. doi: 10.1242/jeb.106849. Epub 2014 Jul 10" |