Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous Abstract"Deep eutectic solvent mediated synthesis of 3,4-dihydropyrimidin-2(1H)-ones and evaluation of biological activities targeting neurodegenerative disorders"    Next AbstractBaseline Narcosis for the Glass-Vial 96-h Growth Inhibition of the Nematode C. elegans and Its Use for Identifying Electrophilic and Pro-Electrophilic Toxicity »

Front Microbiol


Title:Microbial Interactions in the Phyllosphere Increase Plant Performance under Herbivore Biotic Stress
Author(s):Saleem M; Meckes N; Pervaiz ZH; Traw MB;
Address:"Department of Biological Sciences, University of Pittsburgh, Pittsburgh PA, USA. Department of Biological Sciences, University of Pittsburgh, PittsburghPA, USA; Department of Biology, Berea College, BereaKY, USA"
Journal Title:Front Microbiol
Year:2017
Volume:20170120
Issue:
Page Number:41 -
DOI: 10.3389/fmicb.2017.00041
ISSN/ISBN:1664-302X (Print) 1664-302X (Electronic) 1664-302X (Linking)
Abstract:"The phyllosphere supports a tremendous diversity of microbes and other organisms. However, little is known about the colonization and survival of pathogenic and beneficial bacteria alone or together in the phyllosphere across the whole plant life-cycle under herbivory, which hinders our ability to understand the role of phyllosphere bacteria on plant performance. We addressed these questions in experiments using four genetically and biogeographically diverse accessions of Arabidopsis thaliana, three ecologically important bacterial strains (Pseudomonas syringae DC3000, Xanthomonas campestris, both pathogens, and Bacillus cereus, plant beneficial) under common garden conditions that included fungus gnats (Bradysia spp.). Plants supported greater abundance of B. cereus over either pathogenic strain in the phyllosphere under such greenhouse conditions. However, the Arabidopsis accessions performed much better (i.e., early flowering, biomass, siliques, and seeds per plant) in the presence of pathogenic bacteria rather than in the presence of the plant beneficial B. cereus. As a group, the plants inoculated with any of the three bacteria (Pst DC3000, Xanthomonas, or Bacillus) all had a higher fitness than uninoculated controls under these conditions. These results suggest that the plants grown under the pressure of different natural enemies, such as pathogens and an herbivore together perform relatively better, probably because natural enemies induce host defense against each other. However, in general, a positive impact of Bacillus on plant performance under herbivory may be due to its plant-beneficial properties. In contrast, bacterial species in the mixture (all three together) performed poorer than as monocultures in their total abundance and host plant growth promotion, possibly due to negative interspecific interactions among the bacteria. However, bacterial species richness linearly promoted seed production in the host plants under these conditions, suggesting that natural enemies diversity may be beneficial from the host perspective. Collectively, these results highlight the importance of bacterial community composition on plant performance and bacterial abundance in the phyllosphere"
Keywords:antagonistic interactions bacterial species richness beneficial and pathogenic bacteria biotic stress herbivory phyllosphere plant performance plant-microbe-insect interactions;
Notes:"PubMed-not-MEDLINESaleem, Muhammad Meckes, Nicole Pervaiz, Zahida H Traw, Milton B eng Switzerland 2017/02/07 Front Microbiol. 2017 Jan 20; 8:41. doi: 10.3389/fmicb.2017.00041. eCollection 2017"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 22-11-2024