Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractFine Structure of Antennal Sensilla of Paysandisia archon and Electrophysiological Responses to Volatile Compounds Associated with Host Palms    Next AbstractAccessibility investigation of semi-volatile organic compounds in indoor dust estimated by multi-ratio equilibrium passive sampling »

Am J Bot


Title:The Boechera model system for evolutionary ecology
Author(s):Rushworth CA; Wagner MR; Mitchell-Olds T; Anderson JT;
Address:"Department of Biology, Utah State University, Logan, UT, 84322, USA. Department of Ecology and Evolutionary Biology, Kansas Biological Survey and Center for Ecological Research, University of Kansas, Lawrence, KS, 66045, USA. Department of Biology, Duke University, Box 90338, Durham, NC, 27708, USA. Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA"
Journal Title:Am J Bot
Year:2022
Volume:20221113
Issue:11
Page Number:1939 - 1961
DOI: 10.1002/ajb2.16090
ISSN/ISBN:1537-2197 (Electronic) 0002-9122 (Linking)
Abstract:"Model systems in biology expand the research capacity of individuals and the community. Closely related to Arabidopsis, the genus Boechera has emerged as an important ecological model owing to the ability to integrate across molecular, functional, and eco-evolutionary approaches. Boechera species are broadly distributed in relatively undisturbed habitats predominantly in western North America and provide one of the few experimental systems for identification of ecologically important genes through genome-wide association studies and investigations of selection with plants in their native habitats. The ecologically, evolutionarily, and agriculturally important trait of apomixis (asexual reproduction via seeds) is common in the genus, and field experiments suggest that abiotic and biotic environments shape the evolution of sex. To date, population genetic studies have focused on the widespread species B. stricta, detailing population divergence and demographic history. Molecular and ecological studies show that balancing selection maintains genetic variation in ~10% of the genome, and ecological trade-offs contribute to complex trait variation for herbivore resistance, flowering phenology, and drought tolerance. Microbiome analyses have shown that host genotypes influence leaf and root microbiome composition, and the soil microbiome influences flowering phenology and natural selection. Furthermore, Boechera offers numerous opportunities for investigating biological responses to global change. In B. stricta, climate change has induced a shift of >2 weeks in the timing of first flowering since the 1970s, altered patterns of natural selection, generated maladaptation in previously locally-adapted populations, and disrupted life history trade-offs. Here we review resources and results for this eco-evolutionary model system and discuss future research directions"
Keywords:"Genome-Wide Association Study *Brassicaceae/physiology Selection, Genetic *Apomixis Phenotype *Arabidopsis/genetics Boechera Brassicaceae apomixis climate change ecology glucosinolate local adaptation selection;"
Notes:"MedlineRushworth, Catherine A Wagner, Maggie R Mitchell-Olds, Thomas Anderson, Jill T eng Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Review 2022/11/14 Am J Bot. 2022 Nov; 109(11):1939-1961. doi: 10.1002/ajb2.16090. Epub 2022 Nov 13"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 22-11-2024