Title: | Multiple biomarkers highlight the importance of water column processes in treatment wetland organic matter cycling |
Author(s): | Morrison ES; Shields MR; Bianchi TS; Liu Y; Newman S; Tolic N; Chu RK; |
Address: | "Department of Geological Sciences, University of Florida, Gainesville, FL, USA. Electronic address: emorrison@ufl.edu. Department of Geological Sciences, University of Florida, Gainesville, FL, USA. Geochemical and Environmental Research Group, Texas A&M, College Station, TX, USA. Everglades Systems Assessment Section, South Florida Water Management District, West Palm Beach, FL, USA. Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richmond, WA, USA" |
DOI: | 10.1016/j.watres.2019.115153 |
ISSN/ISBN: | 1879-2448 (Electronic) 0043-1354 (Linking) |
Abstract: | "A suite of biomarkers, including amino acids, pigments, and lignin phenols coupled with high resolution mass spectrometry were used to evaluate differences in the sources and fate of organic matter (OM) in Everglades treatment wetlands as a model for OM cycling in shallow water wetlands. Five components of the system (water column particulate matter, vertical traps, flocculent material, periphyton, and surface soil) were assessed for OM transformations down-profile (i.e. water column to soil) and between treatment cells dominated by emergent aquatic vegetation (EAV) and submerged aquatic vegetation (SAV), with comparisons to reference sites within the remnant Everglades. We found that OM cycling is fundamentally different between EAV and SAV wetlands, and that SAV wetlands have some shared characteristics with similar habitats in the remnant Everglades. Other than locations densely populated by Typha spp., water column particulate organic C was predominantly derived from microbial/cryptomonad sources, rather than macroscopic sources (vascular plants and algal mats). Bacterial amino acid biomarkers were positively correlated with amino acid degradation indices and organic P (P(o)), respectively suggesting that microbial abundance is associated with less degraded OM, and that further investigation into relationships between microbial biomass and P(o) is warranted. Overall, this multi-biomarker approach can elucidate the relative degradation of OM pools, identify sources of OM, and highlight the importance of water column processes in shallow water wetlands" |
Keywords: | Biomarkers Plants Soil *Water Purification *Wetlands Amino acids Everglades Lignin Pigments Treatment wetlands; |
Notes: | "MedlineMorrison, Elise S Shields, Michael R Bianchi, Thomas S Liu, Yina Newman, Sue Tolic, Nikola Chu, Rosalie K eng England 2019/10/28 Water Res. 2020 Jan 1; 168:115153. doi: 10.1016/j.watres.2019.115153. Epub 2019 Oct 4" |