Title: | Emissions of biogenic volatile organic compounds from adjacent boreal fen and bog as impacted by vegetation composition |
Author(s): | Mannisto E; Ylanne H; Losoi M; Keinanen M; Yli-Pirila P; Korrensalo A; Back J; Hellen H; Virtanen A; Tuittila ES; |
Address: | "Peatland and Soil Ecology Research Group, School of Forest Sciences, University of Eastern Finland, P.O. Box 111, 80101 Joensuu, Finland. Electronic address: elisa.mannisto@uef.fi. Peatland and Soil Ecology Research Group, School of Forest Sciences, University of Eastern Finland, P.O. Box 111, 80101 Joensuu, Finland; Centre for Environmental and Climate Science, Lund University, Solvegatan 37, 22362 Lund, Sweden. Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland. Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, 80101 Joensuu, Finland. Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, 80101 Joensuu, Finland; Natural Resources Institute Finland (Luke), Yliopistokatu 6B, 80100 Joensuu, Finland. Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, P.O. Box 64, 00014 Helsinki, Finland. Finnish Meteorological Institute, PL 503, 00101 Helsinki, Finland. Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland. Peatland and Soil Ecology Research Group, School of Forest Sciences, University of Eastern Finland, P.O. Box 111, 80101 Joensuu, Finland" |
DOI: | 10.1016/j.scitotenv.2022.159809 |
ISSN/ISBN: | 1879-1026 (Electronic) 0048-9697 (Linking) |
Abstract: | "Peatland ecosystems emit biogenic volatile organic compounds (BVOC), which have a net cooling impact on the climate. However, the quality and quantity of BVOC emissions, and how they are regulated by vegetation and peatland type remain poorly understood. Here we measured BVOC emissions with dynamic enclosures from two major boreal peatland types, a minerotrophic fen and an ombrotrophic bog situated in Siikaneva, southern Finland and experimentally assessed the role of vegetation by removing vascular vegetation with or without the moss layer. Our measurements from four campaigns during growing seasons in 2017 and 2018 identified emissions of 59 compounds from nine different chemical groups. Isoprene accounted for 81 % of BVOC emissions. Measurements also revealed uptake of dichloromethane. Total BVOC emissions and the emissions of isoprene, monoterpenoids, sesquiterpenes, homoterpenes, and green leaf volatiles were tightly connected to vascular plants. Isoprene and sesquiterpene emissions were associated with sedges, whereas monoterpenoids and homoterpenes were associated with shrubs. Additionally, isoprene and alkane emissions were higher in the fen than in the bog and they significantly contributed to the higher BVOC emissions from intact vegetation in the fen. During an extreme drought event in 2018, emissions of organic halides were absent. Our results indicate that climate change with an increase in shrub cover and increased frequency of extreme weather events may have a negative impact on total BVOC emissions that otherwise are predicted to increase in warmer temperatures. However, these changes also accompanied a change in BVOC emission quality. As different compounds differ in their capacity to form secondary organic aerosols, the ultimate climate impact of peatland BVOC emissions may be altered" |
Keywords: | *Volatile Organic Compounds Ecosystem Wetlands Monoterpenes Dwarf shrub Moss Peat Peatland Sedge Sphagnum; |
Notes: | "MedlineMannisto, Elisa Ylanne, Henni Losoi, Mari Keinanen, Markku Yli-Pirila, Pasi Korrensalo, Aino Back, Jaana Hellen, Heidi Virtanen, Annele Tuittila, Eeva-Stiina eng Netherlands 2022/11/07 Sci Total Environ. 2023 Feb 1; 858(Pt 2):159809. doi: 10.1016/j.scitotenv.2022.159809. Epub 2022 Nov 3" |