Title: | A bombykol electrochemical receptor sensor and its kinetics |
Address: | "College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China; Tianjin Key Laboratory of Food Biotechnology, Tianjin 300134, China. College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China. Electronic address: pgc@tjcu.edu.cn" |
DOI: | 10.1016/j.bioelechem.2019.04.009 |
ISSN/ISBN: | 1878-562X (Electronic) 1567-5394 (Linking) |
Abstract: | "This study aimed to explore the interaction between bombykol and BmOR1 and also provide a paradigm for agroforestry pest control. The electrochemical biosensor signal amplification system was used: nanogold with horseradish peroxidase. An electrochemical bilayer nanogold membrane receptor sensor was developed using the following schemes and processes: twice self-assembly of nanogold and succeeding absorption of Bombyx mori olfactory receptor 1 (BmOR1); sex pheromone-binding protein; spectral scanning and transmission electron microscope to characterize nanogold sol; and atomic force microscope, cyclic voltammetry, and AC impedance methods to characterize individual processes of sensor assembly. The amperometric I-T curve was adopted to measure the response current upon interaction with different concentrations of bombykol (diluted in phosphate-buffered saline) and BmOR1. The results demonstrated the receptor-ligand interaction pattern, which was similar to enzymatic reaction kinetics, with the activation constant Ka of up to 8.57?ª+x?ª+10(-20)?ª+mol/L and signal magnification of about 10,000-fold. In this study, the simulation of intracellular receptor signaling cascade by an electrochemical signal amplification system helped in directly measuring BmOR1-bombykol ligand interaction and exploring the kinetics after the self-assembly of BmOR1 on the biosensor. It provided a novel platform for future studies on receptor-ligand interaction" |
Keywords: | "Animals Biosensing Techniques Bombyx Electrochemical Techniques/*methods Fatty Alcohols/*metabolism GTP-Binding Proteins/metabolism Horseradish Peroxidase/metabolism Kinetics Limit of Detection Receptors, Cell Surface/*metabolism Bombykol Electrochemical;" |
Notes: | "MedlineLu, Dingqiang Xu, Qiuda Pang, Guangchang eng Netherlands 2019/05/06 Bioelectrochemistry. 2019 Aug; 128:263-273. doi: 10.1016/j.bioelechem.2019.04.009. Epub 2019 Apr 23" |