Title: | Caenorhabditis elegans utilizes dauer pheromone biosynthesis to dispose of toxic peroxisomal fatty acids for cellular homoeostasis |
Author(s): | Joo HJ; Yim YH; Jeong PY; Jin YX; Lee JE; Kim H; Jeong SK; Chitwood DJ; Paik YK; |
Address: | "Department of Biochemistry, College of Life Sciences and Biotechnology, Yonsei Proteome Research Center, Yonsei University, Seoul, Republic of Korea" |
ISSN/ISBN: | 1470-8728 (Electronic) 0264-6021 (Linking) |
Abstract: | "Caenorhabditis elegans excretes a dauer pheromone or daumone composed of ascarylose and a fatty acid side chain, the perception of which enables worms to enter the dauer state for long-term survival in an adverse environment. During the course of elucidation of the daumone biosynthetic pathway in which DHS-28 and DAF-22 are involved in peroxisomal beta-oxidation of VLCFAs (very long-chain fatty acids), we sought to investigate the physiological consequences of a deficiency in daumone biosynthesis in C. elegans. Our results revealed that two mutants, dhs-28(tm2581) and daf-22(ok693), lacked daumones and thus were dauer defective; this coincided with massive accumulation of fatty acyl-CoAs (up to 100-fold) inside worm bodies compared with levels in wild-type N2 worms. Furthermore, the deficiency in daumone biosynthesis and the massive accumulation of fatty acids and their acyl-CoAs caused severe developmental defects with reduced life spans (up to 30%), suggesting that daumone biosynthesis is be an essential part of C. elegans homoeostasis, affecting survival and maintenance of optimal physiological conditions by metabolizing some of the toxic non-permissible peroxisomal VLCFAs from the worm body in the form of readily excretable daumones" |
Keywords: | "Animals Caenorhabditis elegans/*cytology/genetics/*metabolism Caenorhabditis elegans Proteins/metabolism Cytoplasmic Granules/metabolism Embryonic Development Fatty Acids/*biosynthesis Gene Expression Regulation, Developmental Genes, Helminth Hexoses/bios;" |
Notes: | "MedlineJoo, Hyoe-Jin Yim, Yong-Hyeon Jeong, Pan-Young Jin, You-Xun Lee, Jeong-Eui Kim, Heekyeong Jeong, Seul-Ki Chitwood, David J Paik, Young-Ki eng Research Support, Non-U.S. Gov't England 2009/06/06 Biochem J. 2009 Jul 29; 422(1):61-71. doi: 10.1042/BJ20090513" |