Title: | Assessment of an e-nose performance for the detection of COVID-19 specific biomarkers |
Author(s): | Ghazaly C; Biletska K; Thevenot EA; Devillier P; Naline E; Grassin-Delyle S; Scorsone E; |
Address: | "Universite Paris-Saclay, CEA, LIST, F-91120 Palaiseau, France. Departement Medicaments et Technologies pour la Sante (DMTS), Universite Paris-Saclay, CEA, INRAE, MetaboHUB, 91191 Gif-sur-Yvette, France. Departement des maladies des voies respiratoires, Hopital Foch, Exhalomics, Suresnes, France. VIM Suresnes, UMR-0892, Universite Paris-Saclay, UVSQ, Suresnes, France. Infection et inflammation, Departement de Biotechnologie de la Sante, Universite Paris-Saclay, UVSQ, INSERM, Montigny le Bretonneux, France" |
ISSN/ISBN: | 1752-7163 (Electronic) 1752-7155 (Linking) |
Abstract: | "Early, rapid and non-invasive diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is needed for the prevention and control of coronavirus disease 2019 (COVID-19). COVID-19 mainly affects the respiratory tract and lungs. Therefore, analysis of exhaled breath could be an alternative scalable method for reliable SARS-CoV-2 screening. In the current study, an experimental protocol using an electronic-nose ('e-nose') for attempting to identify a specific respiratory imprint in COVID-19 patients was optimized. Thus the analytical performances of the Cyranose((R)), a commercial e-nose device, were characterized under various controlled conditions. In addition, the effect of various experimental conditions on its sensor array response was assessed, including relative humidity, sampling time and flow rate, aiming to select the optimal parameters. A statistical data analysis was applied to e-nose sensor response using common statistical analysis algorithms in an attempt to demonstrate the possibility to detect the presence of low concentrations of spiked acetone and nonanal in the breath samples of a healthy volunteer. Cyranose((R))reveals a possible detection of low concentrations of these two compounds, in particular of 25 ppm nonanal, a possible marker of SARS-CoV-2 in the breath" |
Keywords: | Humans *covid-19 SARS-CoV-2 Breath Tests/methods Electronic Nose Biomarkers/analysis *Volatile Organic Compounds/analysis Covid-19 breath-analysis electronic-nose nonanal volatile organic compounds; |
Notes: | "MedlineGhazaly, Christelle Biletska, Krystyna Thevenot, Etienne A Devillier, Philippe Naline, Emmanuel Grassin-Delyle, Stanislas Scorsone, Emmanuel eng England 2023/02/08 J Breath Res. 2023 Feb 16; 17(2). doi: 10.1088/1752-7163/acb9b2" |