Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractIndoor air quality in day-care centres: a global review    Next Abstract"Dynamics of limited neoplastic growth on Pongamia pinnata (L.) (Fabaceae) leaf, induced by Aceria pongamiae (Acari: Eriophyidae)" »

Environ Res


Title:The effects of continuous- and stop-flow gas streams on adsorptive removal of benzene vapor using type - II covalent organic polymers
Author(s):Anand B; Szulejko JE; Kim KH; Ahn WS; Son YS;
Address:"Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea. Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea. Electronic address: kkim61@hanyang.ac.kr. Department of Chemistry and Chemical Engineering, Inha University, Incheon, 402-751, South Korea. Department of Environmental Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea. Electronic address: sonys@pknu.ac.kr"
Journal Title:Environ Res
Year:2020
Volume:20191217
Issue:
Page Number:109043 -
DOI: 10.1016/j.envres.2019.109043
ISSN/ISBN:1096-0953 (Electronic) 0013-9351 (Linking)
Abstract:"Various materials have been investigated for the adsorptive removal of volatile organic compounds (VOCs, such as benzene). However, most materials proposed for the adsorptive removal of gaseous benzene (and other VOCs) perform relatively poorly (e.g., an impractically low-service 10% breakthrough volume [BTV10] at < 100 ppm). The adsorbent uptake rate (mg g(-1) min(-1)) can also be assessed as a function of the gas-stream flow rate (or space velocity). The main aim of this study is to explore the effect of two different gas-stream supply modes - stopped flow (at a fixed stream flow rate of 330 mL atm min(-1)) vs. continuous flow (a variable-stream flow rate of 100, 200, or 330 mL atm min(-1)) on the adsorption metrics of gaseous benzene on 5 mg of two types of - II covalent organic polymers (COPs: CBAP-1 [DETA], CD; or CBAP-1 [EDA], CE). The sorbent tube outlet stream was sampled by two respective sampling methods (i.e., a large-volume injector [LVI] for stopped flow vs. syringe injection [SI] for continuous flow) for sample quantitation by gas chromatography flame-ionization detection (GC-FID). The observed BTV10 values in the two sampling modes were similar when tested using 10 ppm benzene, irrespective of sorbents: 56/60 (CD) vs. 620/624 L atm g(-1) (CE). BTV10 values increased systematically with decreasing stream-flow rates to reflect the importance of space velocity in adsorptive removal of benzene. The overall assessment of adsorption performance between stopped flow (LVI) and continuous flow (SI) revealed that the performance of the adsorbent is independent of flow mode (e.g., when performance was compared at flow rate of 330 mL min(-1))"
Keywords:Adsorption *Air Pollution/prevention & control *Benzene/chemistry Gases Polymers *Volatile Organic Compounds Continuous flow Covalent-organic polymers (COPs) Space velocity (SV) Stop flow Volatile organic compounds (VOC);
Notes:"MedlineAnand, Bhaskar Szulejko, Jan E Kim, Ki-Hyun Ahn, Wha-Seung Son, Youn-Suk eng Research Support, Non-U.S. Gov't Netherlands 2020/01/04 Environ Res. 2020 Mar; 182:109043. doi: 10.1016/j.envres.2019.109043. Epub 2019 Dec 17"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 04-01-2025