Title: | Biocontrol activity of four non- and low-fermenting yeast strains against Aspergillus carbonarius and their ability to remove ochratoxin A from grape juice |
Author(s): | Fiori S; Urgeghe PP; Hammami W; Razzu S; Jaoua S; Migheli Q; |
Address: | "Dipartimento di Agraria, Universita degli Studi di Sassari, Viale Italia 39, I-07100 Sassari, Italy. Department of Biological & Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box: 2713, Doha, Qatar. Dipartimento di Agraria, Universita degli Studi di Sassari, Viale Italia 39, I-07100 Sassari, Italy. Electronic address: qmigheli@uniss.it" |
DOI: | 10.1016/j.ijfoodmicro.2014.07.020 |
ISSN/ISBN: | 1879-3460 (Electronic) 0168-1605 (Linking) |
Abstract: | "Aspergillus spp. infection of grape may lead to ochratoxin A (OTA) contamination in processed beverages such as wine and grape juice. The aim of the current study was to evaluate the biocontrol potential of two non-fermenting (Cyberlindnera jadinii 273 and Candida friedrichii 778) and two low-fermenting (Candida intermedia 235 and Lachancea thermotolerans 751) yeast strains against the pathogenic fungus and OTA-producer Aspergillus carbonarius, and their ability to remove OTA from grape juice. Two strains, 235 and 751, showed a significant ability to inhibit A. carbonarius both on grape berries and in in vitro experiments. Neither their filtrate nor their autoclaved filtrate culture broth was able to prevent consistently pathogen growth. Volatile organic compounds (VOCs) produced by all four selected yeasts were likely able to consistently prevent pathogen sporulation in vitro. VOCs produced by the non-fermenting strain 778 also significantly reduced A. carbonarius vegetative growth. Three yeast strains (235, 751, and 778) efficiently adsorbed artificially spiked OTA from grape juice, while autoclaving treatment improved OTA adsorption capacity by all the four tested strains. Biological control of A. carbonarius and OTA-decontamination using yeast is proposed as an approach to meet the Islamic dietary laws concerning the absence of alcohol in halal beverages" |
Keywords: | Antibiosis Aspergillus/*drug effects/growth & development/pathogenicity Beverages/analysis/*microbiology Biological Control Agents Candida/*metabolism Fruit/microbiology Ochratoxins/*antagonists & inhibitors/biosynthesis Saccharomycetales/*metabolism Viti; |
Notes: | "MedlineFiori, Stefano Urgeghe, Pietro Paolo Hammami, Walid Razzu, Salvatorico Jaoua, Samir Migheli, Quirico eng Research Support, Non-U.S. Gov't Netherlands 2014/08/13 Int J Food Microbiol. 2014 Oct 17; 189:45-50. doi: 10.1016/j.ijfoodmicro.2014.07.020. Epub 2014 Jul 31" |