Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractCommunity ecology and the evolution of molecules of keystone significance    Next AbstractChemical Characterization of Narcissus poeticus from Sirente -Velino (Apennines - Italy): Galantamine Accumulation and Distribution of Allergenic Compounds in the Flower »

Nature


Title:A juvenile mouse pheromone inhibits sexual behaviour through the vomeronasal system
Author(s):Ferrero DM; Moeller LM; Osakada T; Horio N; Li Q; Roy DS; Cichy A; Spehr M; Touhara K; Liberles SD;
Address:"Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA"
Journal Title:Nature
Year:2013
Volume:20131002
Issue:7471
Page Number:368 - 371
DOI: 10.1038/nature12579
ISSN/ISBN:1476-4687 (Electronic) 0028-0836 (Print) 0028-0836 (Linking)
Abstract:"Animals display a repertoire of different social behaviours. Appropriate behavioural responses depend on sensory input received during social interactions. In mice, social behaviour is driven by pheromones, chemical signals that encode information related to age, sex and physiological state. However, although mice show different social behaviours towards adults, juveniles and neonates, sensory cues that enable specific recognition of juvenile mice are unknown. Here we describe a juvenile pheromone produced by young mice before puberty, termed exocrine-gland secreting peptide 22 (ESP22). ESP22 is secreted from the lacrimal gland and released into tears of 2- to 3-week-old mice. Upon detection, ESP22 activates high-affinity sensory neurons in the vomeronasal organ, and downstream limbic neurons in the medial amygdala. Recombinant ESP22, painted on mice, exerts a powerful inhibitory effect on adult male mating behaviour, which is abolished in knockout mice lacking TRPC2, a key signalling component of the vomeronasal organ. Furthermore, knockout of TRPC2 or loss of ESP22 production results in increased sexual behaviour of adult males towards juveniles, and sexual responses towards ESP22-deficient juveniles are suppressed by ESP22 painting. Thus, we describe a pheromone of sexually immature mice that controls an innate social behaviour, a response pathway through the accessory olfactory system and a new role for vomeronasal organ signalling in inhibiting sexual behaviour towards young. These findings provide a molecular framework for understanding how a sensory system can regulate behaviour"
Keywords:"Aging Amygdala/cytology Animals Female Lacrimal Apparatus/metabolism Male Mice Mice, Inbred C57BL Pheromones/*metabolism/pharmacology Sensory Receptor Cells/metabolism *Sexual Behavior, Animal/drug effects *Sexual Maturation TRPC Cation Channels/deficienc;"
Notes:"MedlineFerrero, David M Moeller, Lisa M Osakada, Takuya Horio, Nao Li, Qian Roy, Dheeraj S Cichy, Annika Spehr, Marc Touhara, Kazushige Liberles, Stephen D eng P30 HD018655/HD/NICHD NIH HHS/ R01 DC010155/DC/NIDCD NIH HHS/ Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't England 2013/10/04 Nature. 2013 Oct 17; 502(7471):368-71. doi: 10.1038/nature12579. Epub 2013 Oct 2"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 13-01-2025