Title: | Sub- and supercritical water oxidation of anaerobic fermentation sludge for carbon and nitrogen recovery in a regenerative life support system |
Author(s): | Zhang D; Clauwaert P; Luther A; Lopez Barreiro D; Prins W; Wim Brilman DWF; Ronsse F; |
Address: | "Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000 Gent, Belgium. Electronic address: dongdong.zhang@UGent.be. Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Gent, Belgium. Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000 Gent, Belgium. Sustainable Process Technology Group (SPT), Faculty of Science and Technology, University of Twente, Enschede, The Netherlands" |
DOI: | 10.1016/j.wasman.2018.04.008 |
ISSN/ISBN: | 1879-2456 (Electronic) 0956-053X (Linking) |
Abstract: | "Sub- and supercritical water oxidation was applied to recover carbon as CO(2), while maintaining nitrogen as NH(4)(+) or NO(3)(-), from sludge obtained from an anaerobic fermenter running on a model waste composed of plant residues and human fecal matter. The objective was to fully convert carbon in the organic waste to CO(2) while maintaining nutrients (specifically N) in the liquid effluent. In regenerative life support systems, CO(2) and nutrients could then be further used in plant production; thus creating a closed carbon and nutrient cycle. The effect of the operational parameters in water oxidation on carbon recovery (C-to-CO(2)) and nitrogen conversion (to NH(4)(+), NO(3)(-)) was investigated. A batch micro-autoclave reactor was used, at pressures ranging between 110 and 300?ª+bar and at temperatures of 300-500?ª+ degrees C using hydrogen peroxide as oxidizer. Residence times of 1, 5 and 10?ª+min were tested. Oxidation efficiency increased as temperature increased, with marginal improvements beyond the critical temperature of water. Prolonging the residence time improved only slightly the carbon oxidation efficiency. Adequate oxygen supply, i.e., exceeding the stoichiometrically required amount, resulted in high carbon conversion efficiencies (>85%) and an odorless, clear liquid effluent. However, the corresponding oxidizer use efficiency was low, up to 50.2% of the supplied oxygen was recovered as O(2) in the effluent gas and did not take part in the oxidation. Volatile fatty acids (VFAs) were found as the major soluble organic compounds remaining in the effluent liquid. Nitrogen recovery was high at 1?ª+min residence time (>94.5%) and decreased for longer residence times (down to 36.4% at 10?ª+min). Nitrogen in the liquid effluent was mostly in the form of ammonium" |
Keywords: | "Bioreactors Carbon *Fermentation Humans *Nitrogen *Sewage Waste Disposal, Fluid Water Carbon recovery Fermentation sludge MELiSSA Nitrogen recovery Supercritical water oxidation;" |
Notes: | "MedlineZhang, Dongdong Clauwaert, Peter Luther, Amanda Lopez Barreiro, Diego Prins, Wolter Wim Brilman, D W F Ronsse, Frederik eng 2018/04/25 Waste Manag. 2018 Jul; 77:268-275. doi: 10.1016/j.wasman.2018.04.008. Epub 2018 Apr 21" |