Title: | Platinum-Supported Zirconia Nanotube Arrays Supported on Graphene Aerogels Modified with Metal-Organic Frameworks: Adsorption and Oxidation of Formaldehyde at Room Temperature |
Author(s): | Tan H; Chen D; Li N; Xu Q; Li H; He J; Lu J; |
Address: | "College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P.R. China" |
ISSN/ISBN: | 1521-3765 (Electronic) 0947-6539 (Linking) |
Abstract: | "Precious-metal catalysts (e.g., Au, Rh, Ag, Ru, Pt, and Pd) supported on transition-metal oxides (e.g., Al(2) O(3) , Fe(2) O(3) , CeO(2) , ZrO(2) , Co(3) O(4) , MnO(2) , TiO(2) , and NiO) can effectively oxidize volatile organic compounds. In this study, porous platinum-supported zirconia materials have been prepared by a 'surface-casting' method. The synthesized catalysts present an ordered nanotube structure and exhibited excellent performance toward the catalytic oxidation of formaldehyde. A facile method, utilizing a boiling water bath, was used to fabricate graphene aerogel (GA), and the macroscopic 3D Pt/ZrO(2) -GA was modified by introducing an adjustable MOF coating by a surface step-by-step method. The unblocked mesoporous structure of the graphene aerogel facilitates the ingress and egress of reactants and product molecules. The selected 7 wt.% Pt/ZrO(2) -GA-MOF-5 composite demonstrated excellent performance for HCHO adsorption. Additionally, this catalyst achieved around 90 % conversion when subjected to a reaction temperature of 70 degrees C (T(90 %) =70 degrees C). The Pt/ZrO(2) -GA-MOF-5 composite induces a catalytic cycle, increasing the conversion by simultaneously adsorbing and oxidizing HCHO. This work provides a simple approach to increasing reactant concentration on the catalyst to increase the rate of reaction" |
Keywords: | heterogeneous catalysis metal-organic frameworks oxidation platinum zirconium; |
Notes: | "PubMed-not-MEDLINETan, Haocun Chen, Dongyun Li, Najun Xu, Qingfeng Li, Hua He, Jinghui Lu, Jianmei eng Germany 2019/10/28 Chemistry. 2019 Dec 20; 25(72):16718-16724. doi: 10.1002/chem.201904426. Epub 2019 Nov 26" |