Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous Abstract"Synthesis, Absolute Configurations, and Biological Activities of Floral Scent Compounds from Night-Blooming Araceae"    Next AbstractPhylogeny of North American fireflies (Coleoptera: Lampyridae): implications for the evolution of light signals »

Chem Senses


Title:The site of action of general anaesthetics in insect olfactory receptor neurons
Author(s):Stange G; Kaissling KE;
Address:"Max-Planck-Institut fur Verhaltensphysiologie, Seewiesen/Starnberg, Germany"
Journal Title:Chem Senses
Year:1995
Volume:20
Issue:4
Page Number:421 - 432
DOI: 10.1093/chemse/20.4.423
ISSN/ISBN:0379-864X (Print) 0379-864X (Linking)
Abstract:"The effect of volatile anaesthetics such as N2O, Xe, short-chain alkanes and cyclopropane, at pharmacologically relevant concentrations, on olfactory receptor neurons of insects was tested in electrophysiological recordings. CO2-receptor neurons in moths and flies respond with increased action potential activity, whereas in honeybees the effect is inhibitory. With increasing chain length of the alkanes, the effectiveness increases initially, in adherence to the Meyer-Overton rule; alkanes of a chain length of 5 and above are less effective or evoke suppression of action potentials. In olfactory receptor neurons sensitive to benzoic acid in female moths of Bombyx mori and in pheromone receptor neurons of male moths of Antheraea polyphemus, anaesthetics are ineffective if applied alone; if superimposed on an excitatory olfactory stimulus, an inhibitory effect occurs. Local stimulation of only part of a sensory dendrite reveals that the anaesthetics are effective only if applied at the same location as the excitatory stimulus. This indicates that the anaesthetics reversibly block the reception of pheromone or its effect on the conductance of the receptor cell membrane. The observed interactions are consistent with the hypothesis that the anaesthetics do not interact with the primary transduction process, but rather affect a later stage such as the activation of ion channels"
Keywords:"Action Potentials/drug effects Anesthetics, Inhalation/*pharmacology Animals Binding Sites Carbon Dioxide/pharmacology Female Lepidoptera/*anatomy & histology Male Olfactory Receptor Neurons/*drug effects/physiology/ultrastructure Species Specificity;"
Notes:"MedlineStange, G Kaissling, K E eng Comparative Study England 1995/08/01 Chem Senses. 1995 Aug; 20(4):421-32. doi: 10.1093/chemse/20.4.423"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 01-01-2025