Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractSocial chemosignals from breastfeeding women increase sexual motivation    Next AbstractSize Exclusion High Performance Liquid Chromatography: Re-Discovery of a Rapid and Versatile Method for Clean-Up and Fractionation in Chemical Ecology »

Insects


Title:Reactive Oxygen Species Initiate Defence Responses of Potato Photosystem II to Sap-Sucking Insect Feeding
Author(s):Sperdouli I; Andreadis SS; Adamakis IS; Moustaka J; Koutsogeorgiou EI; Moustakas M;
Address:"Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization-Demeter (ELGO-Dimitra), 57001 Thermi, Greece. Section of Botany, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece. Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece"
Journal Title:Insects
Year:2022
Volume:20220424
Issue:5
Page Number: -
DOI: 10.3390/insects13050409
ISSN/ISBN:2075-4450 (Print) 2075-4450 (Electronic) 2075-4450 (Linking)
Abstract:"Potato, Solanum tuberosum L., one of the most commonly cultivated horticultural crops throughout the world, is susceptible to a variety of herbivory insects. In the present study, we evaluated the consequence of feeding by the sap-sucking insect Halyomorpha halys on potato leaf photosynthetic efficiency. By using chlorophyll fluorescence imaging methodology, we examined photosystem II (PSII) photochemistry in terms of feeding and at the whole leaf area. The role of reactive oxygen species (ROS) in potato's defence response mechanism immediately after feeding was also assessed. Even 3 min after feeding, increased ROS generation was observed to diffuse through the leaf central vein, probably to act as a long-distance signalling molecule. The proportion of absorbed energy being used in photochemistry (Phi(PSII)) at the whole leaf level, after 20 min of feeding, was reduced by 8% compared to before feeding due to the decreased number of open PSII reaction centres (qp). After 90 min of feeding, Phi(PSII) decreased by 46% at the whole leaf level. Meanwhile, at the feeding zones, which were located mainly in the proximity of the leaf midrib, Phi(PSII) was lower than 85%, with a concurrent increase in singlet-excited oxygen ((1)O(2)) generation, which is considered to be harmful. However, the photoprotective mechanism (Phi(NPQ)), which was highly induced 90 min after feeding, was efficient to compensate for the decrease in the quantum yield of PSII photochemistry (Phi(PSII)). Therefore, the quantum yield of non-regulated energy loss in PSII (Phi(NO)), which represents (1)O(2) generation, remained unaffected at the whole leaf level. We suggest that the potato PSII response to sap-sucking insect feeding underlies the ROS-dependent signalling that occurs immediately and initiates a photoprotective PSII defence response to reduce herbivory damage. A controlled ROS burst can be considered the primary plant defence response mechanism to herbivores"
Keywords:Halyomorpha halys Solanum tuberosum biotic stress chlorophyll fluorescence imaging herbivore insects non-photochemical quenching photoprotection photosynthetic efficiency singlet oxygen;
Notes:"PubMed-not-MEDLINESperdouli, Ilektra Andreadis, Stefanos S Adamakis, Ioannis-Dimosthenis S Moustaka, Julietta Koutsogeorgiou, Eleni I Moustakas, Michael eng Switzerland 2022/05/28 Insects. 2022 Apr 24; 13(5):409. doi: 10.3390/insects13050409"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 14-01-2025