Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous Abstract[Sick building syndrome and HVAC system: MVOC from air filters]    Next AbstractReceptors of sex pheromones and abstinons inMusca domestica andGlossina morsitans »

J Breath Res


Title:Volatile organic compounds discriminate between eosinophilic and neutrophilic inflammation in vitro
Author(s):Schleich FN; Dallinga JW; Henket M; Wouters EF; Louis R; van Schooten FJ;
Address:"Department of Pulmonary Medicine, CHU Sart-Tilman, Liege. GIGA I3 research Group. University of Liege, Belgium"
Journal Title:J Breath Res
Year:2016
Volume:20160201
Issue:1
Page Number:16006 -
DOI: 10.1088/1752-7155/10/1/016006
ISSN/ISBN:1752-7163 (Electronic) 1752-7155 (Linking)
Abstract:"Inflammation associated oxidative stress leads to peroxidation of polyunsaturated fatty acids thereby generating volatile organic compounds (VOCs). The integrative analysis of the total amount of VOCs released by eosinophils and neutrophils in vitro enables the search for those compounds that discriminates between various inflammatory conditions. The approach comprises isolating eosinophils and neutrophils from 30 ml of blood of healthy non-smoking volunteers by gradient centrifugation, using lymphoprep. Eosinophils are separated from neutrophils by immunomagnetic cell separation using anti-CD16. Cells are activated with phorbol 12-myristate 13-acetate and VOCs from the headspace are collected at time 0', 30', 60' and 90' by introduction of ultra-pure nitrogen in the closed flasks at a flow rate of 200 ml min(-1) during 10 min. The gases are trapped onto a sorption tube and analyzed by gas chromatography-time-of-flight-mass spectometry (GC-TOF-MS) in order to identify VOCs released in the headspace by activated neutrophils and eosinophils. Eosinophils and neutrophils were isolated from 26 healthy non-smoking volunteers. The average absolute number of eosinophils and neutrophils upon isolation was 3.5 x 10(6) and 19.4 x 10(6), respectively. The volatome in headspace consisted of 2116 compounds and those compounds present in at least 8% of the samples (1123 compounds) were used for further discriminant analysis. Discriminant analysis showed that two VOCs were able to distinguish between eosinophilic and neutrophilic cultures in the unactivated state with 100% correct classification of the entire data set and upon cross validation while five VOCs were able to discriminate between activated eosinophils and neutrophils with 96% correct classification in the original set and upon cross-validation. Analysis of VOCs seems to be a very promising approach in identifying eosinophilic and neutrophilic inflammation but it needs further development and in vivo confirmation"
Keywords:Eosinophils/*metabolism Gas Chromatography-Mass Spectrometry Humans Inflammation/*metabolism Neutrophils/*metabolism Volatile Organic Compounds/*analysis;
Notes:"MedlineSchleich, Florence N Dallinga, Jan W Henket, Monique Wouters, Emiel F M Louis, Renaud Van Schooten, Frederik J eng Research Support, Non-U.S. Gov't England 2016/02/02 J Breath Res. 2016 Feb 1; 10(1):016006. doi: 10.1088/1752-7155/10/1/016006"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-12-2024