Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractRetention/release equilibrium of aroma compounds in fat-free dairy gels    Next AbstractOlfactory Landmark-Based Communication in Interacting Drosophila »

Eukaryot Cell


Title:Response of the Saccharomyces cerevisiae Mpk1 mitogen-activated protein kinase pathway to increases in internal turgor pressure caused by loss of Ppz protein phosphatases
Author(s):Merchan S; Bernal D; Serrano R; Yenush L;
Address:"Instituto de Biologia Molecular y Celular de Plantas, Universidad Politecnica de Valencia-CSIC, Valencia, Spain"
Journal Title:Eukaryot Cell
Year:2004
Volume:3
Issue:1
Page Number:100 - 107
DOI: 10.1128/EC.3.1.100-107.2004
ISSN/ISBN:1535-9778 (Print) 1535-9786 (Electronic) 1535-9786 (Linking)
Abstract:"The Mpk1 pathway of Saccharomyces cerevisiae is a key determinant of cell wall integrity. A genetic link between the Mpk1 kinase and the Ppz phosphatases has been reported, but the nature of this connection was unclear. Recently, the Ppz phosphatases were shown to be regulators of K+ and pH homeostasis. Here, we demonstrate that Ppz-deficient strains display increased steady-state K+ levels and sensitivity to increased KCl concentrations. Given these observations and the fact that K+ is the major determinant of intracellular turgor pressure, we reasoned that the connection between PPZ1 and -2 and MPK1 was due to the combination of increased internal turgor pressure in Ppz-deficient strains and cell wall instability observed in strains lacking MPK1. Accordingly, the MPK1 gene was up-regulated, the Mpk1 protein was overexpressed, and the phosphorylated active form was more abundant in Ppz-deficient strains. Moreover, the expression of genes previously identified as targets of the Mpk1 pathway are also up-regulated in strains lacking PPZ1 and -2. The transcriptional and posttranslational modifications of Mpk1 were not observed when the internal K+ concentration (and thus turgor pressure) was lowered by disrupting the TRK1 and -2 K+ transporter genes or when the cell wall was stabilized by the addition of sorbitol. Moreover, we present genetic evidence showing that both the Wsc1 and Mid2 branches of the Mpk1 pathway contribute to this response. Finally, despite its role in G1/S transition, increased levels of activated Mpk1 do not appear to be responsible for the cell cycle phenotype observed in Ppz-deficient strains"
Keywords:"Blotting, Northern Blotting, Western Calcium-Binding Proteins/metabolism Genotype Hydrogen-Ion Concentration Intracellular Signaling Peptides and Proteins Membrane Glycoproteins Membrane Proteins/metabolism Mitogen-Activated Protein Kinases/*metabolism Mu;"
Notes:"MedlineMerchan, Stephanie Bernal, Dolores Serrano, Ramon Yenush, Lynne eng Research Support, Non-U.S. Gov't 2004/02/12 Eukaryot Cell. 2004 Feb; 3(1):100-7. doi: 10.1128/EC.3.1.100-107.2004"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-12-2024