Title: | "Penicillium fungi mediate behavioral responses of the yellow peach moth, Conogethes punctiferalis (Guenee) to apple fruits via altering the emissions of host plant VOCs" |
Author(s): | Guo HG; Han CY; Zhang AH; Yang AZ; Qin XC; Zhang MZ; Du YL; |
Address: | "College of Bioscience and Resource Environment/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing University of Agriculture, Beijing, China" |
Journal Title: | Arch Insect Biochem Physiol |
ISSN/ISBN: | 1520-6327 (Electronic) 0739-4462 (Linking) |
Abstract: | "Plant-associated microbes have been reported as important but overlooked drivers of plant-herbivorous insect interactions. Influence of plant-associated microbes on plant-insect interactions is diverse, including beneficial, detrimental, and neutral. Here, we determined the effects of three Penicillium fungi, including Penicillium citrinum, Penicillium sumatrense, and Penicillium digitatum, on the oviposition selection and behavior of the yellow peach moth (YPM), Conogethes punctiferalis (Guenee). Compared with fungi noninfected apples (NIA), mechanically damaged apples (MDA), and P. citrinum in potato dextrose agar medium (PC), the oviposition selection and four-arm olfactometer experiments both showed that mated YPM females preferred to P. citrinum-infected apples (PCA). For P. sumatrense or P. digitatum, we also found that mated YPM females preferred to P. sumatrense-infected apples (PSA) or P. digitatum-infected apples (PDA), respectively. Among three Penicillium fungi-infected apples, the selection rates including oviposition and olfactometer behavior of mated YPM females on PDA were both higher than those on PSA and PCA. Further analyses of host plant volatile organic compounds (VOCs) by GC-MS showed that the absolute contents of ethyl hexanoate and (Z, E)-alpha-farnesene in PCA, PSA, and PDA were all higher than those in NIA, and a total of 16 novel VOCs were detected in fungi-infected apples (PCA, PSA, and PDA), indicating that fungi infection changed the components and proportions of apple VOCs. Taken together, three Penicillium fungi play significant roles in mediating the host selection of YPMs via altering the emissions of VOCs. These findings will be beneficial for developing formulations for field trapping of YPMs in the future" |
Keywords: | Animals Female Fruit/microbiology *Malus/microbiology *Moths/physiology *Penicillium *Prunus persica *Volatile Organic Compounds/pharmacology Conogethes punctiferalis (Guenee) Penicillium fungi fungi-infected apples the selection behavior of YPMs; |
Notes: | "MedlineGuo, Hong-Gang Han, Chun-Yu Zhang, Ai-Huan Yang, Ai-Zhen Qin, Xiao-Chun Zhang, Min-Zhao Du, Yan-Li eng Z171100001117130/Science and Technology Fund of Beijing Municipal Commission of Education/ 6172005/Natural Science Foundation of Beijing Municipality/ QNKJ202103/Science Fund for Young Scholars from the Beijing University of Agriculture to H.G. Guo/ KM202110020011/General Project of Scientific Research Program of Beijing Educational Committee/ 2022/04/05 Arch Insect Biochem Physiol. 2022 Jul; 110(3):e21895. doi: 10.1002/arch.21895. Epub 2022 Apr 3" |