Title: | Multiple microbial activities for volatile organic compounds reduction by biofiltration |
Address: | "Department of Food Science, Environmental Microbiology Laboratory, Udine University, Udine, Italy. Marcello.Civilini@uniud.it" |
DOI: | 10.1080/10473289.2006.10464503 |
ISSN/ISBN: | 1096-2247 (Print) 1096-2247 (Linking) |
Abstract: | "In the northeast of Italy, high volatile organic carbon (VOC) emissions originate from small-medium companies producing furniture. In these conditions it is difficult to propose a single, efficient, and economic system to reduce pollution. Among the various choices, the biofiltration method could be a good solution, because microbial populations possess multiple VOC degradation potentials used to oxidize these compounds to CO2. Starting from the air emissions of a typical industrial wood-painting plant, a series of experiments studied in vitro microbial degradation of each individual VOC. Isolated strains were then added to a laboratory-scale biofiltration apparatus filled with an organic matrix, and the different VOC behavior demonstrated the potential of single and/or synergic microbial removal actions. When a single substrate was fed, the removal efficiency of a Pseudomonas aeruginosa inoculated reactor was 1.1, 1.17, and 0.33 g m(-3) hr(-1), respectively, for xylene, toluene, and ethoxy propyl acetate. A VOC mixture composed of butyl acetate, ethyl acetate, diacetin alcohol, ethoxy propanol acetate, methyl ethyl ketone, methyl isobutyl ketone, toluene, and xylene was then fed into a 2-m(3) reactor treating 100 m3 hr(-1) of contaminated air. The reactor was filled with the same mixture of organic matrix, enriched with all of the isolated strains together. During reactor study, different VOC loading rates were used, and the behavior was evaluated continuously. After a short acclimation period, the removal efficiency was > 65% at VOC load of 150-200 g m(-3) hr(-1). Quantification of removal efficiencies and VOC speciation confirmed the relationship among removal efficiencies, compound biodegradability, and the dynamic transport of each mixture component within the organic matrix. Samples of the fixed bed were withdrawn at different intervals and the heterogeneous microbial community evaluated for both total and differential compound counts" |
Keywords: | "Air Pollutants/*isolation & purification/*metabolism Air Pollution/*prevention & control Arthrobacter/metabolism Aspergillus/metabolism Biodegradation, Environmental Bioreactors Industrial Waste Interior Design and Furnishings Organic Chemicals/*isolation;" |
Notes: | "MedlineCivilini, Marcello eng Research Support, Non-U.S. Gov't 2006/08/02 J Air Waste Manag Assoc. 2006 Jul; 56(7):922-30. doi: 10.1080/10473289.2006.10464503" |